P = x2 + x/ x2 - 2x + 1 : ( x+1/x - 1/1- x + 2 - x2/ x2 - x )
Rút gọn P
Tìm x để P < 1
Giúp mình với mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) x(5-2x)+2x(x-1)
= 5x - 2x2 + 2x2 - 2x
= 3x
B) (12x-5)(4x-1)+(3x-7)(1-16x)
= 48x - 12x - 20x + 5 + 3x - 48x - 7 + 112x
= 83x - 2
C) 2x(x-5)-x(2x+3)-5x(x+1)
= 2x2 - 10x - 2x2 - 3x - 5x2 - 5x
= -5x2 - 18x
Chúc bạn học tốt!!!
Thiếu đề là : Rút gọn biểu thức sau nhé !
a, \(x\left(5-2x\right)+2x\left(x-1\right)=5x-2x^2+2x^2-2x=3x\)
b, \(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)\)
\(=48x^2-12x-20x+5+3x-48x^2-7+112x\)
\(=83x-2\)
c, \(2x\left(x-5\right)-x\left(2x+3\right)-5x\left(x+1\right)=2x^2-10x-2x^2-3x-5x^2-5x\)
\(=-5x^2-18x\)
Bài làm:
Ta có: \(9x^2y^2+y^2-6xy+y+2\)
\(=\left(9x^2y^2-6xy+1\right)+\left(y^2+y+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(3xy-1\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
=> BT lớn hơn hẳn ko
( 3x - 1 )( x + 3 ) + 9x2 - 1 = 0
<=> 3x2 + 9x - x - 3 + 9x2 - 1 = 0
<=> 12x2 + 8x - 4 = 0
<=> 4( 3x2 + 2x - 1 ) = 0
<=> 3x2 + 2x - 1 = 0
<=> 3x2 + 3x - x - 1 = 0
<=> ( 3x2 + 3x ) - ( x + 1 ) = 0
<=> 3x( x + 1 ) - 1( x + 1 ) = 0
<=> ( 3x - 1 )( x + 1 ) = 0
<=> \(\orbr{\begin{cases}3x-1=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=-1\end{cases}}\)
Vậy S = { 1/3 ; -1 }
\(\frac{x+1}{3}>\frac{3x-2}{5}\)
\(\Leftrightarrow\frac{5\left(x+1\right)}{15}>\frac{3\left(3x-2\right)}{15}\)
\(\Leftrightarrow5x+5>9x-6\)
\(\Leftrightarrow5x-9x>-6-5\)
\(\Leftrightarrow-4x>-11\)
\(\Leftrightarrow x< \frac{11}{4}\)
Bài làm:
a) \(\left(3x-1\right)\left(x+3\right)+9x^2-1=0\)
\(\Leftrightarrow3x^2+8x-3+9x^2-1=0\)
\(\Leftrightarrow12x^2+8x-4=0\)
\(\Leftrightarrow3x^2+2x-1=0\)
\(\Leftrightarrow\left(3x^2+3x\right)-\left(x+1\right)=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-1\end{cases}}\)
Vậy tập nghiệm của PT \(S=\left\{-1;\frac{1}{3}\right\}\)
b) \(\frac{x+1}{3}>\frac{3x-2}{5}\Leftrightarrow\frac{5\left(x+1\right)}{15}>\frac{3\left(3x-2\right)}{15}\)
\(\Rightarrow5x+5>9x-6\)
\(\Leftrightarrow4x< 11\)
\(\Rightarrow x< \frac{11}{4}\)
Bài làm:
Gọi t1, t2 (h) là thời gian đi hết lần lượt 2 phần đường
Ta có: \(t_1=\frac{AB}{3.12}=\frac{AB}{36}\left(h\right)\)
và \(t_2=\frac{2AB}{3.14}=\frac{AB}{21}\left(h\right)\)
Gọi Vtb là vận tốc trung bình trên cả đoạn đường AB nên ta có:
\(V_{tb}=\frac{AB}{\frac{AB}{36}+\frac{AB}{21}}=\frac{AB}{AB\left(\frac{1}{36}+\frac{1}{21}\right)}=\frac{1}{\frac{19}{252}}=\frac{252}{19}\)(km/h)
Ta có: p+n+e = 180
Mà 2n = p+e
=> 3n =180 => n =60
=> p+e=2p=120
=> p = e = 60
Dựa vào số Proton trong nguyên tuwe ta xác định được B là nguyên tố: Neodymi
Mình nghĩ chỗ đề bài đoạn cuối là : A là nguyên tố gì ?
Bài làm :
Ta có :
\(p+n+e=180\)
Mà số hạt không mang điện chỉ bằng một nửa số hạt mang điện nên n = p = e
Thay vào biểu thức
=>3n=180 => n=p=e=60 .
Vậy nguyên tố đó là :Neođim (Nd) .
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Bài làm:
Ta có: \(A=\left(x+y+z\right)^3+\left(x-y-z\right)^3\)
\(A=x^3+3x^2\left(y+z\right)+3x\left(y+z\right)^2+\left(y+z\right)^3+x^3-3x^2\left(y+z\right)+3x\left(y+z\right)^2-\left(y+z\right)^3\)
\(A=2x^3+6x\left(y+z\right)^2=B\)
=> A = B
A = ( x + y + z )3 + ( x - y - z )3
A = [ ( x + y ) + z ]3 + [ ( x - y ) - z ]3
A = [ ( x + y )3 + 3( x + y )2z + 3( x + y )z2 + z3 ] + [ ( x - y )3 - 3( x - y )2z + 3( x - y )z2 - z3 ]
A = [ x3 + 3x2y + 3xy2 + 3x2z + 6xyz + 3y2z + 3xz2 + 3yz2 + z3 ] + [ x3 - 3x2y + 3xy2 - 3x2z + 6xyz - 3y2z + 3xz2 - 3yz2 - z3 ]
A = 2x3 + 6xy2 + 12xyz + 6xz2
B = 6x( y + z )2 + 2x3
B = 6x( y2 + 2yz + z2 ) + 2x3
B = 6xy2 + 12xyz + 6z2 + 2x3
=> A = B ( đpcm )
|x + 3| + 4x = 5
=> |x + 3| = 5 - 4x (1)
ĐKXĐ : \(5-4x\ge0\Rightarrow4x\le5\Rightarrow x\le1,25\)
Khi đó (1) <=> \(\orbr{\begin{cases}x+3=5-4x\\x+3=-5+4x\end{cases}}\Rightarrow\orbr{\begin{cases}5x=2\\3x=8\end{cases}\Rightarrow\orbr{\begin{cases}x=0,4\left(tm\right)\\x=\frac{8}{3}\left(\text{loại}\right)\end{cases}}}\)
Vậy x = 0,4
a) P=\(\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\left(x\ne\pm1;x\ne0\right)\)
P=\(\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x\left(x-1\right)}\right)\)
P=\(\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}+\frac{x}{x\left(x-1\right)}+\frac{2-x^2}{x\left(x-1\right)}\right)\)
P=\(\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\frac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)
P=\(\frac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\frac{x\left(x-1\right)}{x+1}=\frac{x\left(x+1\right)x\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}=\frac{x^2}{x-1}\)
vậy P=\(\frac{x^2}{x-1}\left(x\ne\pm1;x\ne0\right)\)
b) ta có \(P=\frac{x^2}{x-1}\left(x\ne\pm1;x\ne0\right)\)
để P<1 => \(\frac{x^2}{x-1}< 1\)
\(\Leftrightarrow\frac{x^2}{x-1}-1< 0\Leftrightarrow\frac{x^2-x+1}{x-1}< 0\Leftrightarrow\frac{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}{x-1}< 0\)
thấy \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
vậy để P-1<0 thì x-1<0
=> x<1. kết hợp với điều kiện ta được \(\hept{\begin{cases}x< 1\\x\ne0\\x\ne-1\end{cases}}\)thì P<1