K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2020

a , sai đề thì phải @@

b, \(\frac{a^2+b^2}{2}\ge ab< =>a^2+b^2\ge2ab< =>\left(a-b\right)^2\ge0\)*đúng*

c, \(\left(a+1\right)^2>a\left(a+2\right)< =>a^2+2a+1>a^2+2a< =>1>0\)*đúng*

d, Áp dụng BĐT Cauchy cho 2 số :

\(m^2+1\ge2m\)

\(n^2+1\ge2n\)

Cộng theo vế ta có điều phải chứng minh 

28 tháng 7 2020

e, Áp dụng BĐT Cauchy cho 2 số không âm ta có :

\(a+b\ge2\sqrt{ab}\)

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)

Nhân theo vế các BĐT cùng chiều ta được :

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4\)

Dấu "=" xảy ra khi và chỉ khi \(a=b\)

Vậy ta có điều phải chứng minh

28 tháng 7 2020

a) \(\frac{x^2+2}{5}\ge0\)

\(\Rightarrow x^2+2\ge0\)( đúng với mọi x )

Vậy \(S=\left\{ℝ\right\}\)

b) \(\frac{x+2}{x-3}< 0\)( ĐKXĐ : \(x\ne3\))

Xét hai trường hợp :

1. \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\)( loại )

2. \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3\)

Vậy nghiệm của bất phương trình là -2 < x < 3

c) \(\frac{x-1}{x-3}>1\)( ĐKXĐ : \(x\ne3\))

\(\Leftrightarrow\frac{x-3+2}{x-3}>1\)

\(\Leftrightarrow1+\frac{2}{x-3}>1\)

\(\Leftrightarrow\frac{2}{x-3}>0\)

\(\Leftrightarrow x-3>0\)

\(\Leftrightarrow x>3\)

Vậy nghiệm của bất phương trình là x > 3

Nhờ bạn khác vẽ trục số nhé vì mình mới lên lớp 8

28 tháng 7 2020

câu a không xảy ra dấu = nhé các bạn 

28 tháng 7 2020

không biêt đâu

28 tháng 7 2020

Bài làm:

Ta có: \(a+b+c=0\Leftrightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)

Thay vào ta được: \(\hept{\begin{cases}M=a\left(-c\right)\left(-b\right)=abc\\N=b\left(-a\right)\left(-c\right)=abc\\P=c\left(-b\right)\left(-a\right)=abc\end{cases}}\)

\(\Rightarrow M=N=P\)

28 tháng 7 2020

Cho mình hỏi là bạn có viết thiếu đề ko vậy

Dù mình chưa học đến lớp 8 nhưng từ thuở đi học cho tới giờ chưa thấy cái đề nào như này!

27 tháng 7 2020

mng bỏ 992 đi nhé

27 tháng 7 2020

Trả lời:

\(51^2=\left(50+1\right)^2\)

        \(=50^2+2\times50\times1+1^2\)

        \(=2500+100+1\)

        \(=2601\)

\(301^2=\left(300+1\right)^2\)

          \(=300^2+2\times300\times1+1^2\)

          \(=90000+600+1\)  

          \(=90601\)

\(99^2=\left(100-1\right)^2\)

        \(=100^2-2\times100+1\)

        \(=10000-200+1\)

        \(=9801\)

Học tốt 

27 tháng 7 2020

Xài BĐT Bunhiacopski ta dễ có:

\(\left[a\left(b+c\right)+b\left(a+c\right)+c\left(a+b\right)\right]\left[\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\right]\)

\(\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\left(ab+bc+ca\right)^2\)

\(\Rightarrow\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{a^2b^2c^2}}{2}=\frac{3}{2}\)

Đẳng thức xảy ra tại a=b=c=1

27 tháng 7 2020

Đặt \(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\) khi đó vế trái của bất đẳng thức tương đương với :D

\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

Sử dụng AM - GM:

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}\cdot\frac{y+z}{4}}=x\)

Tương tự cộng lại thì có đpcm nhóe :))

27 tháng 7 2020

2[ab(2a+b)+bc(2b+c)+ac(2c+a)+4,5abc]

27 tháng 7 2020

Phân tích đa thức thành nhân tử ?

\(x^3y^6+1=\left(xy^2\right)^3+1=\left(xy^2+1\right)\left(x^2y^4-xy^2+1\right)\)

27 tháng 7 2020

                               Bài làm :

Ta có :

\(x^3y^6+1\)

\(=\left(xy^2\right)^3+1^3\)

\(=\left(xy^2+1\right)\left(x^2y^4-xy^2+1\right)\)

Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!