Giải phương trình: \(\sqrt{\left(x^2+1\right)\left(x+3\right)\left(x^4+5\right)\left(x+7\right)}=\sqrt{\left(x+2\right)\left(x^4+4\right)\left(x+6\right)\left(x^2+8\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đưa x vào căn
=> cs 2 th:
thêm dấu - trc x hoặc ko
sau đó đặt x-1=t
thay vào giải pt là ra
hok tốt
ĐK: \(x-\frac{1}{x}\ge0;x\ne0\)
Đặt \(\sqrt{x-\frac{1}{x}}=t\Rightarrow x-\frac{1}{x}=t^2\)
Theo đề bài ta có hệ: \(\hept{\begin{cases}\left(x-1\right)^2+xt=2\\x-\frac{1}{x}=t^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-2x-1=-xt\\x^2-1=xt^2\end{cases}}\)
Lấy pt dưới trừ pt trên vế với vế: \(2x=xt^2+xt\)
\(\Leftrightarrow x\left(t^2+t-2\right)=0\Leftrightarrow\orbr{\begin{cases}t=1\\t=-2\left(L\right)\end{cases}}\left(\text{vì }x\ne0\right)\)
....
P/s: Em ko chắc nha!
a, (O, R) có EM là tiếp tuyến ( M là tiếp điểm)
=> OM= R, EM\(\perp\)OM tại M
(O, R) có AB là đk
=> O là TĐ của AB
=> OA=OB=1/2AB=R
Tam giác AMB có MO là đường trung tuyến ứng với AB, MO=R=1/2AB
=> Tam giác AMB vuông tại M
C/ M các tiếp tuyến AC, CM cắt nhau => AC=CM
BD, MD cắt nhau => BD=MD
=> AC+BD=CM+MD=CD
b, Có OA=OM=R, AC=CM
=> OC là đường trung trực của AM
Mà OC cắt AM tại H
=> OC vuông với AM tại H, H là TĐ của AM.
C/M T.T: OD vuông với MB tại K, K là TĐ của MB.
T/g OKMH có 3 góc vuông AMB, OHM, OKM nên là hcn
c, DO là p/g góc MDB => MDO=ODB=1/2 MDB
OBD=90=> OBK+KBD=90
Tam giác DKB vuông tại K=> KBD+BDK=90
=> BDK=OBK
mà BDK=ODM=> OBK=ODM => ABM=ODC
C/m OC, OD lần lượt là p/g AOM, MOB . Từ đó c/m COD=90
C/m Tam giác ABM đồng dạng với tam giác CDO (gg)
=> AM/CO=BM/DO
=> AM.DO=MB.CO
đặt đk
rồi bphuong 2 vế lên nha
c2: đặt x+5=t
thay vào pt
biểu diễn theo t
hok tốt
ĐKXĐ:\(x\ge-5\)
Đặt \(\sqrt{x+5}=t\ge0\Rightarrow x+5=t^2\)
Ta có hệ: \(\hept{\begin{cases}x^2-4x-3=t\\x+5=t^2\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=t+7\\x-2=t^2-7\end{cases}}\)
Lấy pt trên cộng pt dưới, vế với vế:
\(\left(x-2\right)^2+\left(x-2\right)=t^2+t\)
\(\Leftrightarrow\left(x-t-2\right)\left(t+x-1\right)=0\)
...
P/s:Em ko chắc
Nhìn cái D cồng kềnh thế thôi chứ key vô cùng EZ.
\(D=\sqrt{a\left(a+1\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+6\right)+36}\)
\(=\sqrt{\left[a\left(a+6\right)\right]\left[\left(a+1\right)\left(a+5\right)\right]\left[\left(a+2\right)\left(a+4\right)\right]+36}\)
\(=\sqrt{\left(a^2+6a\right)\left(a^2+6a+5\right)\left(a^2+6a+8\right)+36}\)
Đặt \(a^2+6a=x\)
Ta có:
\(D=\sqrt{x\left(x+5\right)\left(x+8\right)+36}=\sqrt{x^3+13x^2+40x+36}\)
\(=\sqrt{\left(x+9\right)\left(x+2\right)^2}\)
Thay \(x=a^2+6a\) ta có:
\(D=\sqrt{\left(a^2+6a+9\right)\left(a^2+6a+2\right)^2}=\sqrt{\left(a+3\right)^2\left(a+6a+2\right)^2}=\left(a+3\right)\left(a+6a+2\right)\)
là số nguyên vs a nguyên khác 0 nha !