K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2019

Bài này không cần giải phương trình dưới đâu nhé!

Liên hợp ta có: 

\(\sqrt{x^2-3x+14}-\sqrt{x^2-3x+8}=2\)

<=> \(\frac{\left(x^2-3x+14\right)-\left(x^2-3x+8\right)}{\sqrt{x^2-3x+14}+\sqrt{x^2-3x+8}}=2\)

<=> \(\frac{6}{\sqrt{x^2-3x+14}+\sqrt{x^2-3x+8}}=2\)

<=> \(\sqrt{x^2-3x+14}+\sqrt{x^2-3x+8}=\frac{6}{2}=3\)

Vậy B = 3.

9 tháng 12 2019

\(A=\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)\left(1-\frac{1}{\sqrt{x}}\right)\)

\(=\frac{2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}.\frac{-\left(1-\sqrt{x}\right)}{\sqrt{x}}\)

\(=\frac{-2}{1+\sqrt{x}}\)

b) 

 Để \(A\in Z\)

\(\Rightarrow1+\sqrt{x}\inƯ\left(-2\right)\)

\(\Rightarrow\sqrt{x}\in\left\{0;-2;1;-3\right\}\)mà \(\sqrt{x}\ge0\)

\(\Rightarrow\sqrt{x}\in\left\{1;0\right\}\)

\(\Rightarrow x\in\left\{0;1\right\}\)

9 tháng 12 2019

Em kiểm tra lại đề bài nhé! 

nếu đúng thì đề là \(\left(x^2-x+1\right)^4-10x^2\left(x^2-x+1\right)+9x^4=0\).

9 tháng 12 2019

dạ đề đúng đấy ạ