Tính giá trị biểu thức \(B=\sqrt{x^2-3x+14}+\sqrt{x^2-3x+8}\)
biết \(\sqrt{x^2-3x+14}-\sqrt{x^2-3x+8}=2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)\left(1-\frac{1}{\sqrt{x}}\right)\)
\(=\frac{2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}.\frac{-\left(1-\sqrt{x}\right)}{\sqrt{x}}\)
\(=\frac{-2}{1+\sqrt{x}}\)
b)
Để \(A\in Z\)
\(\Rightarrow1+\sqrt{x}\inƯ\left(-2\right)\)
\(\Rightarrow\sqrt{x}\in\left\{0;-2;1;-3\right\}\)mà \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}\in\left\{1;0\right\}\)
\(\Rightarrow x\in\left\{0;1\right\}\)
Em kiểm tra lại đề bài nhé!
nếu đúng thì đề là \(\left(x^2-x+1\right)^4-10x^2\left(x^2-x+1\right)+9x^4=0\).
Bài này không cần giải phương trình dưới đâu nhé!
Liên hợp ta có:
\(\sqrt{x^2-3x+14}-\sqrt{x^2-3x+8}=2\)
<=> \(\frac{\left(x^2-3x+14\right)-\left(x^2-3x+8\right)}{\sqrt{x^2-3x+14}+\sqrt{x^2-3x+8}}=2\)
<=> \(\frac{6}{\sqrt{x^2-3x+14}+\sqrt{x^2-3x+8}}=2\)
<=> \(\sqrt{x^2-3x+14}+\sqrt{x^2-3x+8}=\frac{6}{2}=3\)
Vậy B = 3.