Bài 1Cho tam giác ABC có cạnh AB = 15 cm , cạnh AC = 20 cm . Trên cạnh AB lấy điểm M sao cho AM = 10 cm, trên cạnh AC lấy điểm E sao cho AE = 15 cm . Nối điểm M với điểm E .Tính diện tích tam giác ABC, biết DT tam giác AME là 34,8cm2 Bài 2Một mảnh vườn hình thang vuông có ĐL 60m, ĐB 30 m và CC 40 m. Trên mảnh vườn ấy, người ta mở một con đường rộng 8 m dọc theo ĐL của mảnh vườn. Tính DT phần đất còn lại của mảnh vườn sau khi mở đường? 60đ lận đó ạ Vẽ hình thôi,ko cần làm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bạn còn thiếu dữ kiện 2 cạnh nào của hình thang song song với nhau nữa ạ!
Ta có:
\(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x+2\right)^2\le0\)
Dấu "=" xảy ra \(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy GTLN của biểu thức là 0 khi \(x=-2\)
Học tốt
Vì \(\left(x+2\right)^2\ge0\forall x\)
nên \(-\left(x+2\right)^2\le0\)
Dấu "=" xảy ra \(\Leftrightarrow x=-2\)
Vậy GTLN của bt trên bằng 0 <=> x = -2
a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(\Rightarrow x^5+x^4y+x^3y^2+x^2y^3+y^5-yx^4-x^3y^2-x^2y^3-xy^4-y^5=VP\)
\(\Rightarrow dpcm\)
b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(\Rightarrow x^5-x^4y+x^3y^2-x^2y^3+xy^4+yx^4-x^3y^2-xy^4+y^5=VP\)
\(\Rightarrow dpcm\)
c.d làm tương tự
Bài làm
a) Biến đổi vế trái, ta được:
\(VT=\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)
\(=\left(x^5-y^5\right)+\left(x^4y-x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(x^2y^3-x^2y^3\right)+\left(xy^4-xy^4\right)\)
\(=x^5-y^5=VP\left(đpcm\right)\)
b) Biến đổi vế trái, ta có:
\(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)
\(=\left(x^5+y^5\right)+\left(-x^4y+x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(-x^2y^3+x^2y^3\right)+\left(xy^4-xy^4\right)\)
\(=x^5+y^5=VP\left(đpcm\right)\)
c) Biến đổi vế trái, ta có:
\(VT=\left(a+b\right)\left(a^3-a^2b+ab^2-b^3\right)\)
\(=a^4-a^3b+a^2b^2-ab^3+a^3b-a^2b^2+ab^3-b^4\)
\(=\left(a^4-b^4\right)+\left(-a^3b+a^3b\right)+\left(a^2b^2-a^2b^2\right)+\left(-ab^3+ab^3\right)\)
\(=a^4-b^4=VP\left(đpcm\right)\)
d) Đây là hằng đẳng thức, như vế phải hình như bạn viết bị sai, mik sửa là vế phải nha.
\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)
Biến đổi vế trái, ta có:
\(VT=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)
\(=\left(a^3+b^3\right)+\left(-a^2b+a^2b\right)+\left(ab^2-ab^2\right)\)
\(=a^3+b^3=VP\left(đpcm\right)\)
Bài làm
a) ( 2x - 3 ).( x + 1 ) - 2x( 2 - x ) - 4x2 + 5x
= 2x2 + 2x - 3x - 3 - 4x + 2x2 - 4x2 + 5x
= -3
b) x3 - 6x2 + 9x + 14 : ( x - 7 )
Đặt cột chia ta được:
= x2 + x + 16 ( dư 126 )
Nhưng nếu đề thế này tính dễ hơn.
x3 - 6x2 - 9x + 14 : ( x - 7 )
= x3 - 8x2 + 7x + 2x2 - 16x + 14 : ( x - 7 )
= ( 7x + 14 ) + ( x3 - 8x2 + 2x2 - 16x ) : ( x - 7 )
= 7( x + 2 ) + x( x2 - 8x + 2x - 16 ) : ( x - 7 )
= 7( x + 2 ) + x[ ( x2 - 8x ) + ( 2x - 16 ) ] : ( x - 7 )
= 7( x + 2 ) + x[ x( x - 8 ) + 2( x - 8 ) : ( x - 7 )
= 7( x + 2 ) + x( x + 2 )( x - 8 ) : ( x - 7 )
= ( x + 2 )[ 7 + x( x - 8 )] : ( x - 7 )
= ( x + 2 )( x2 - 8x + 7 ) : ( x - 7 )
= ( x + 2 )( x2 - 7x - x + 7 ) : ( x - 7 )
= ( x + 2 )[ ( x2 - 7x ) - ( x - 7 ) ] : ( x - 7 )
= ( x + 2 )[ x( x - 7 ) - ( x - 7 ) ] : ( x - 7 )
= ( x - 2 )( x - 1 )( x - 7 ) : ( x - 7 )
= ( x - 2 )( x - 1 )
~ Bạn xem đề nào mới đunbgs nha ~
(a+b)2(a-b)2-2(a+b)(a-b)
=(a+b)(a-b)(a+b)(a-b)-2(a+b)(a-b)
=(a+b)(a-b)[(a+b)(a-b)-2]
=(a+b)(a-b)(a2-b2-2)
a, \(5x^2y+15xy^3=5xy\left(x+y^2\right)\)
b,\(4x-3xy+8x^2-6x^2y=x\left(4-3y\right)+2x^2\left(4-3y\right)=\left(x+2y^2\right)\left(4-3y\right)\)
c, viết lại đề đi bạn , khó đọc quá
a. \(5x^2y+15xy^3=5xyx+5xy\left(3y^2\right)=5xy\left(x+3y^2\right)\)
b. \(4x-3xy+8x^2-6x^2y=x\left(4-3y\right)+2x^2\left(4-3y\right)=\left(x+2x^2\right)\left(4-3y\right)\)
c.
a. \(-x^2+4x+y^2-12y+47\)
\(=-\left(x^2-4x-y^2+17y-47\right)\)
\(=-\left[x^2-4x+4-\left(y^2-12y+36\right)-15\right]\)
\(=-\left[\left(x-2\right)^2-\left(y-6\right)^2-15\right]\)
Vì \(\left(x-2\right)^2-\left(y-6\right)^2-15\ge-15\forall x\)
\(\Rightarrow-\left[\left(x-2\right)^2-\left(y-6\right)^2-15\right]\le15\)
Vậy GTLN của bt trên là 15 \(\Leftrightarrow x=2;y=6\)
b. \(-x^2-x-y^2-3y+13\)
\(=\frac{1}{4}\left(-4x^2-4x-4y^2-12y+52\right)\)
\(=\frac{1}{4}\left[-\left(2x+1\right)^2-\left(2y+3\right)^2+42\right]\)
Vì \(\frac{1}{4}\left[-\left(2x+1\right)^2-\left(2y+3\right)^2+42\right]\le42\forall x;y\)
\(\Rightarrow-\left(2x+1\right)^2-\left(2y+3\right)^2+42\le\frac{21}{2}\forall x;y\)
Vậy GTLN của bt trên là 21/2 \(\Leftrightarrow x=-\frac{1}{2};y=-\frac{3}{2}\)