Cho đường thẳng (d): y= (m-5)x + 7 (m là tham số) và điểm A (2;4). Biết đường thẳng (d) song song với đường thẳng OA. Tìm giá trị của m.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK : \(x\ge-2;y\ge-3\)
pt (1) <=> \(x^3+x=\left(y+1\right)^3+\left(y+1\right)\)
<=> \(\left(y+1\right)^3-x^3+\left(y+1\right)-x=0\)
<=> \(\left(y+1-x\right)\left(\left(y+1\right)^2+\left(y+1\right)x+x^2+1\right)=0\)
<=> \(y+1-x=0\) vì \(\left(y+1\right)^2+\left(y+1\right)x+x^2+1>0\)dễ chứng minh.
<=> \(x=y+1\)(1')
pt (2) <=> \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{y+3}-3\right)^2}=1\)
<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{y+3}-3\right|=1\)(2')
Thế (1') vào (2') ta có: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=1\)
Có: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=\left|\sqrt{y+3}-2\right|+\left|3-\sqrt{y+3}\right|\ge1\)
Do đó: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=1\)<=> \(\left(\sqrt{y+3}-2\right)\left(3-\sqrt{y+3}\right)\ge0\)
<=> \(2\le\sqrt{y+3}\le3\)
<=> \(4\le y+3\le9\)
<=> \(1\le y\le6\)(tm)
Khi đó: x = y + 1 với mọi y thỏa mãn \(1\le y\le6\)
Vậy tập nghiệm \(S=\left\{\left(y+1;y\right):1\le y\le6\right\}\)
DK: \(x\ge1;y\ge0\)
Ta có: \(x^2-2y^2=xy+x+y\)
<=> \(x^2-\left(y+1\right)x-2y^2-y=0\)(1)
xem (1) là phương trình ẩn x tham số y
\(\Delta=\left(y+1\right)^2-4\left(-2y^2-y\right)=9y^2+6y+1=\left(3y+1\right)^2\)
pt (1) có 2 nghiệm : \(\orbr{\begin{cases}x=\frac{y+1+3y+1}{2}=2y+1\\x=\frac{y+1-\left(3y+1\right)}{2}=-y\end{cases}}\)
+) Với x = 2y +1; thế vào pt (2) ta có:
\(\left(2y+1\right)\sqrt{2y}-y\sqrt{2y}=3y+3\)
<=> \(\left(y+1\right)\sqrt{2y}=3\left(y+1\right)\)
<=> \(\orbr{\begin{cases}y+1=0\\\sqrt{2y}=3\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-1\left(loại\right)\\y=\frac{9}{2}\end{cases}}}\)
Với y = 9/2 => x = 10 thỏa mãn
+) Với x = - y
Ta có: \(x\ge1\Rightarrow-y\ge1\Rightarrow y\le-1\)vô lí vì \(y\ge0\).
Vậy x = 10; y = 9/2.
viết câuTương đương mà nghĩa không thay đổi
mary usually gets 8 for her math tests. Dave usually gets 10 for his maths tests
Qua O kẻ đường thẳng vuông góc với OC cắt AC; BC lần lượt tại M và N
Xét \(\Delta\)CMN có: CO là phân giác đồng thời là đường cao
=> \(\Delta\)CMN cân
=> ^CMN = ^CNM => ^CMO = ^CNO => ^AMO = ^BNO
=> ^MAO + ^AOM = ^NBO + ^BON ( 1)
Xét trong \(\Delta\)BOA ta có: ^ABO + ^BAO = ^AOM + ^BON ( = 180 \(^o\)- ^AOB )
=> ^NBO + ^MAO = ^AOM+ ^BON ( AO ; BO là phân giác ^A; ^B ) (2)
Từ (1)- (2) => ^AOM - ^NBO = ^NBO - ^AOM
=> ^AOM = ^NBO (3)
Từ (3) dễ dàng chứng minh đươc \(\Delta\)AOM ~ \(\Delta\)OBN ~ \(\Delta\)ABO ( g-g ) ( tự chứng minh )
Có: \(\Delta\)AOM ~ \(\Delta\)OBN => \(\frac{AM}{ON}=\frac{OM}{BN}\)=> AM.BN = OM. ON (4)
Có: \(\Delta\)OBN ~ \(\Delta\)ABO => \(\frac{OB}{BN}=\frac{AB}{OB}\)=> OB.OB = AB.BN => \(\frac{OB^2}{AB.BC}=\frac{BN}{BC}\)(5)
Có: \(\Delta\)AOM ~ \(\Delta\)ABO => \(\frac{OA}{AM}=\frac{AB}{OA}\)=> OA.OA =AM.AB => \(\frac{OA^2}{AB.AC}=\frac{AM}{AC}\)(6)
Xét \(\Delta\)cân CMN có: OM = ON ; CM = CN
Xét \(\Delta\)CON vuông tại O => CN\(^2\)= ON\(^2\)+ OC\(^2\)
=> OC \(^2\)= CN\(^2\)- ON\(^2\)= CN.CM - ON.OM = ( BC - BN ) ( AC - AM ) - ON.OM
= BC.AC - BN. AC - BC.AM + BN. AM - ON . OM = BC. AC - BN.AC - BC.AM ( theo 4 => BN. AM - ON . OM = 0)
=> \(\frac{OC^2}{CA.CB}=1-\frac{BN}{BC}-\frac{AM}{AC}\)(7)
Từ (5); (6) (7) => \(\frac{OC^2}{AC.BC}=1-\frac{OA^2}{AB.AC}-\frac{OB^2}{BA.BC}\)
Chuyển vế => Điều phải chứng minh
Phương trình (2) <=> x +3xy = 3xy + y + 5
<=> x = y + 5 <=> x - y = 5
phương trình (1) <=> (x - y ) \(^2\)=1
Khi đó ta có: 5\(^2\)=1 vô lí
Em kiểm tra lại đề bài nhé!
\(3^x+171=y^2\)
+) Với x = 0 ta có: \(1+171=y^2\)( loại )
+) Với x = 1, ta có: \(3+171=y^2\)( loại )
+) Với x > 1.
pt <=> \(9\left(3^{x-2}+19\right)=y^2\)
=> \(3^{x-2}+19=z^2\)với \(y=3z\)( z là số tự nhiên )
+) TH1: \(x-2=2k+1\)( k là số tự nhiên )
Ta có: \(3^{2k+1}+19=z^2\)
có: \(3^{2k+1}+19⋮2\)
nhưng \(3^{2k+1}+19=3^{2k}.3+1+16+2\): 4 dư 2
=> \(3^{2k+1}+19\) không phải là số chính phương
Vậy loại trường hợp này
+) TH2: \(x-2=2k\)( k là số tự nhiên )
Ta có: \(3^{2k}+19=z^2\)
<=> \(\left(z-3^k\right)\left(z+3^k\right)=19\) (1)
z, 3^k là số tự nhiên nên ( 1) <=> \(\hept{\begin{cases}z+3^k=19\\z-3^k=1\end{cases}\Leftrightarrow}\hept{\begin{cases}z=10\\k=2\end{cases}}\)=> x = 6; y = 30. Thử lại thấy thỏa mãn
Vậy....
Đặt: \(A=\frac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}>0\)
<=> \(A.\sqrt{4+\sqrt{13}}=\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}\)
<=> \(A^2\left(4+\sqrt{13}\right)=4+\sqrt{3}+4-\sqrt{3}+2\sqrt{13}\)
<=> \(A^2\left(4+\sqrt{13}\right)=2\left(4+\sqrt{13}\right)\)
<=> \(A=\sqrt{2}\)
Vậy: \(\frac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt{2}}\)
\(=\sqrt{2}+\sqrt{25-2.5.\sqrt{2}+2}\)
\(=\sqrt{2}+\left(5-\sqrt{2}\right)=5\)
Cho tam giac ABC ,M la TD cua AC . Tren tia doi cua tia MB lay D sao cho MD bang MB
a. C/m: tam giac AMD bang tam giac CMB ; goc ADM bang goc CBM
b. C/m: AD//BC
c.goi N la TD cua AB >Tren tia doi cua tia NC lay diem E sao cho NE bang NC. C/m A la TD cua ED