giải giúp em với ạ em đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề:
ABC cân tại A có BH và CK là hai đường cao
a) Do ∆ABC cân tại A (gt)
⇒ AB = AC
Xét hai tam giác vuông: ∆AHB và ∆AKC có:
AB = AC (cmt)
∠A chung
⇒ ∆AHB = ∆AKC (cạnh huyền - góc nhọn)
⇒ AH = AK (hai cạnh tương ứng)
⇒ ∆AKH cân tại A
b) ∆ABC cân tại A (gt)
BH và CK là hai đường cao cắt nhau tại I (gt)
⇒ AI là đường cao thứ ba
⇒ AI ⊥ BC
⇒ IM ⊥ BC
Do ∆ABC cân tại A có
AI là đường cao (cmt)
⇒ AM là đường cao
⇒ AM cũng là đường trung tuyến
⇒ M là trung điểm của BC
⇒ MB = MC
Xét hai tam giác vuông: ∆IBM và ∆ICM có:
IM là cạnh chung
MB = MC (cmt)
⇒ ∆IBM = ∆ICM (hai cạnh góc vuông)
⇒ ∠BIM = ∠CIM (hai góc tương ứng)
⇒ IM là tia phân giác của ∠BIC
c) Xét hai tam giác vuông: ∆AHI và ∆AKI có:
AI là cạnh chung
AH = AK (cmt)
⇒ ∆AHI = ∆AKI (cạnh huyền - cạnh góc vuông)
⇒ IH = IK (hai cạnh tương ứng)
⇒ I nằm trên đường trung trực của HK (1)
Do AH = AK (cmt)
⇒ A nằm trên đường trung trực của HK (2)
Từ (1) và (2) ⇒ AI là đường trung trực của HK
⇒ AI ⊥ HK
Lại có:
AI ⊥ BC (cmt)
⇒ HK // BC
\(\left(x+3\right)\left(x-1\right)=x\left(x-1\right)+3\left(x-1\right)=x^2-x+3x-3=x^2+2x-3\)
\(\left(3x^3-2x^2\right):3x^2=3x^3:3x^2-2x^2:3x^2=x-\dfrac{2}{3}\)
mình có bài này bạn lấy thâm khảo nhé nhớ cho mình một like ( •̀ ω •́ )✧
Trong cùng 1 quãng đường AB,vận tốc và thời gian là 2 đại lượng tỉ lê nghịch.Vậy tỉ số thời gian đi với vận tốc 20km/giờ=3/2 thời gian đi với vận tốc 30km/giờ.
Coi...
Thời gian đi với vận tốc 20km/giờ là:
2:(3-2)*3=6(giờ)
Quãng đường AB là:
20*6=120(km)
Đáp số:120km
Tổng của số bị trừ và số trừ là 3600-1550=2050
Hiệu của số bị trừ và số trừ là 1550
Số bị trừ là (2050+1550):2=3600:2=1800
Số trừ là 1800-1550=250
Tổng của số bị trừ và số trừ là:
3600-1550=2050
Hiệu của số bị trừ và số trừ là:
1550
Số bị trừ là:
(2050+1550):2=3600:2=1800
Số trừ là:
1800-1550=250
a: Xét ΔBAM vuông tại A và ΔBKM vuông tại K có
BM chung
\(\widehat{ABM}=\widehat{KBM}\)
Do đó: ΔBAM=ΔBKM
=>BA=BK
=>ΔBAK cân tại B
b: Ta có: \(\widehat{CAK}+\widehat{BAK}=\widehat{BAC}=90^0\)
\(\widehat{DAK}+\widehat{BKA}=90^0\)(ΔDAK vuông tại D)
mà \(\widehat{BAK}=\widehat{BKA}\)(ΔBAK cân tại B)
nên \(\widehat{CAK}=\widehat{DAK}\)
=>AK là phân giác của góc DAC
c: Xét ΔABC vuông tại A có AD là đường cao
nên \(AD\cdot BC=AB\cdot AC\)
\(\left(AB+AC\right)^2-\left(BC+AD\right)^2\)
\(=AB^2+AC^2+2\cdot AB\cdot AC-BC^2-2\cdot BC\cdot AD-AD^2\)
\(=BC^2+2\cdot BC\cdot AD-BC^2-2\cdot BC\cdot AD-AD^2\)
\(=-AD^2< 0\)
=>\(\left(AB+AC\right)^2< \left(BC+AD\right)^2\)
=>AB+AC<BC+AD