2.29.
Số 2021 có thể viết thành tổng của hai số nguyên tố được không? Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ E = 3x ( x – 2 ) + x ( 6 – 3x ) + 5
= \(3x^2-6x+6x-3x^2+5=5\)
b/ F = ( x + 2 ) ( x – 3 ) – ( x + 3 ) x – 4 )
= \(x^2-x-6-x^2-3x+4x+12=6\)
Đặt \(A=\frac{a}{\sqrt{a^2+2bc}}+\frac{b}{\sqrt{b^2+2ca}}+\frac{c}{\sqrt{c^2+2ab}}\left(a,b,c>0\right)\)
Ta có:
\(A=\sqrt{1-\frac{2bc}{a^2+2bc}}+\sqrt{1-\frac{2ca}{b^2+2ca}}+\sqrt{1-\frac{2ab}{c^2+2ab}}\)
\(\le\sqrt{1-\frac{2bc}{a^2+b^2+c^2}}+\sqrt{1-\frac{2ca}{a^2+b^2+c^2}}\)\(+\sqrt{1-\frac{2ab}{a^2+b^2+c^2}}\).
\(=\frac{\sqrt{a^2+\left(b-c\right)^2}+\sqrt{b^2+\left(c-a\right)^2}+\sqrt{c^2+\left(a-b\right)^2}}{\sqrt{a^2+b^2+c^2}}\)\(\le\frac{\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}}{\sqrt{a^2+b^2+c^2}}=\frac{a+b+c}{\sqrt{a^2+b^2+c^2}}\)\(\le\frac{a+b+c}{\sqrt{ab+bc+ca}}\).
Dấu \("="\)xảy ra \(\Leftrightarrow a=b=c>0\).
Vậy với \(a,b,c>0\)thì :
\(\frac{a}{\sqrt{a^2+2bc}}+\frac{b}{\sqrt{b^2+2ca}}+\frac{c}{\sqrt{c^2+2ab}}\le\frac{a+b+c}{\sqrt{ab+bc+ca}}\).
Ta có: 2 021 = 2 + 2 019
Vì 2 019 có tổng các chữ số là 2 + 0 + 1 + 9 = 12 ⁝ 3 nên 2 019 ⁝ 3 vì thế 2 019 không phải là số nguyên tố.
Ngoài số 2 là số chẵn nguyên tố duy nhất, các số nguyên tố khác hai đều là số lẻ.
Do vậy tổng của hai số nguyên tố khác 2 là một số chẵn
Mà 2 021 là số lẻ
Vậy 2 021 không thể viết thành tổng của hai số nguyên tố được.