Thực hiện phép chia
a, (x4-2x3+2x-1):(x2-1)
b, (8x3-6x2-5x+3):((4x+3)
c, (x3-3x2+3x-2):(x2-x+1)
d, (2x3-3x2+3x-1):(x2-x+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách giải
Gọi x (km) là quãng đường AB (x > 0)
Thời gian đi từ A đến B: x/40 (h)
Thời đi từ B về A : x/30 (h)
Cả đi và về mất 10 giờ 30 phút = 10 1/2 ( h ) = 10,5 ( h )
Nên ta có pt: x/40 + x/30 = 10,5
Giải pt: x = 180 (TMĐK x > 0)
Vậy quãng đường AB dài 180km
Hok tốt^^
+) Ta có: 10 giờ 30 phút= 10,5 giờ
+) Gọi thời gian lúc đi là x. (x>0 ) (h)
=> Thời gian lúc về là 10,5- x (h)
+) Quãng đường lúc đi là 40x (km)
Quãng đường lúc về là 30 (10,5-x) (km)
Vì đi và về trên 1 quãng đường, nên:
40x= 30(10,5-x)
<=> 40x +30x= 315
<=>70x= 315
=> x= 315/70= 4,5 (TMĐK)
Quãng đường AB dài: 4,5. 40= 180 (km)
+ Tính cạnh huyền của đáy :√5^2 + 12^2 = 13 (cm)
+ Diện tích xung quanh của lăng trụ : ( 5 + 12 + 13 ). 8 = 240(cm2)
+ Diện tích một đáy : (5.12):2 = 30(cm2)
+ Thể tích lăng trụ : 30.8 = 240(cm3)
Hok tốt
Vì đáy là tam giác vuông nên độ dài cạnh huyền của đáy là: \(\sqrt{5^2+12^2}=\sqrt{169}=13\)
Diện tích xung quanh của hình lăng trụ đứng đấy là: (5+12+13) .8 = 240 (cm2 )
Thể tích của hình lăng trụ đứng đấy là: \(\frac{1}{2}.5+12.10=122,5\)
Gọi khoảng cách từ nhà Bình đến trường là x (km) , ( x > 0)
Thời gian Bình đi từ nhà đến trường là: x /15 (giờ)
Thời gian Bình đi từ trường về nhà là: x /12(giờ)
Vì thời gian về nhiều hơn thời gian đi là 6 phút = 1/10 (giờ)
Ta có PT: x /12 – x /15 = 1/10
<=> 5x – 4x = 6
<=> x = 6
Vậy nhà Bình cách trường 6km
hok tốt ^^
Cách giải
a, 2x - x (3x + 1 ) < 15 - 3x(x + 2)
<=> 2x - 3x2 - x < 15 - 3x2 - 6x
<=> 7x < 15
<=> x < 15/7 Vậy Tập nghiệm của BPT là : { x / x < 15/7 }
b , BPT <=> 2(1 - 2x ) - 16 < 1 - 5x + 8x
<=> -7x < 15
<=> x > -15/7 Vậy tập nghiệm của BPT là : { x / x > -15/7 }
a) 2x-x(3x+1) < 15-3x(x+2)
<=> 2x-3x2-x < 15-3x2-6x
<=> 2x-3x2-x+3x2+6x < 15
<=> 7x < 15
<=> x < 15/7
Vậy tập nghiệm của bất phương trình là x < 15/7
b) \(\frac{1-2x}{4}-2\le\frac{1-5x}{8}+x\)
Quy đồng mẫu ta được :
\(\frac{2-4x}{8}-\frac{16}{8}\le\frac{1-5x}{8}+\frac{8x}{8}\)
Khử mẫu
=> \(2-4x-16\le1-5x+8x\)
<=> \(-4x+5x-8x\le1-2+16\)
<=> \(-7x\le15\)
<=> \(x\ge-\frac{15}{7}\)
Vậy tập nghiệm của bất phương trình là \(x\ge-\frac{15}{7}\)
5x(x-1)(2x+3) - 10x(x2-4x+5) - (x-1)(x-4)
= (5x2-5x)(2x+3)-10x3+10x2-50x -( x2-5x+4 )
= 10x3+5x2-15x-10x3+40x2-50x-x2+5x-4
= 44x2-60x-4
Thế x=3/2 ta được :
44.(3/2)2-60.3/2-4 = 99-90-4 = 5
Vậy giá trị của biểu thức = 5 khi x=3/2
a) Áp dụng tính chất tia phân giác
=> \(\frac{DB}{DC}=\frac{AB}{AC}=\frac{3}{4}\)
Áp dụng định lí Pytago => \(BC=10\)=> \(DB+DC=10\)
=> \(DB=\frac{30}{7};BC=10\)
b) Đây là 1 HTL (Đi thi ko cần phải chứng minh) (\(AH^2=HB.HC\))
c) Tam giác EBD đồng dạng tam giác ABC (gg) khi có chung góc B và BED=BAC=90 (gt)
=> \(\frac{EB}{BD}=\frac{AB}{BC}\)
=> \(EB.BC=BD.AB\)(ĐPCM)
d) Áp dụng HTL: \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
Thay AB=6; AC=8 vào:
=> \(\frac{1}{AH^2}=\frac{25}{576}\)
=> \(AH=\frac{24}{5}\)
Ta tiếp tục áp dụng HTL: \(BH.BC=AB^2\)
Thay AB=6; BC=10 (CMT) vào ta được:
=> \(BH=\frac{36}{10}\)
Có: \(BD=\frac{30}{7}\)(CMT) => \(HD=\frac{24}{35}\)
=> Diện tích tam giác AHD = \(\frac{AH.HD}{2}=\frac{24}{35}.\frac{5}{24}:2=\frac{1}{14}\)
Vậy diện tích tam giác AHD = \(\frac{1}{14}\)(cm^2)
Lần sau bạn ghi đúng lớp với ạ!
1/ Đặt: \(\sqrt[3]{x+1}=a;\sqrt[3]{x+3}=b\Rightarrow\sqrt[3]{x+2}=\sqrt[3]{\frac{a^3+b^3}{2}}\)
Thay vào ta có: \(a+b+\sqrt[3]{\frac{a^3+b^3}{2}}=0\)
<=> \(a+b=-\sqrt[3]{\frac{a^3+b^3}{2}}\)
<=> \(a^3+b^3+3a^2b+3ab^2=-\frac{a^3+b^3}{2}\)
<=> \(a^3+b^3+2a^2b+2ab^2=0\)
<=> \(\left(a+b\right)\left(a^2-ab+b^2\right)+2ab\left(a+b\right)=0\)
<=> \(\left(a+b\right)\left(a^2+ab+b^2\right)=0\)
<=> \(\orbr{\begin{cases}a+b=0\\a^2+ab+b^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=-b\\\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}=0\end{cases}}\)
Với a = -b ta có: \(\sqrt[3]{x+1}=-\sqrt[3]{x+3}\)
<=> x + 1 = - x - 3 <=> 2x = - 4 <=> x = - 2
Với \(\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2=0\Leftrightarrow\left(a+\frac{b}{2}\right)^2=b^2=0\)
<=> a = b = 0 <=> \(\sqrt[3]{x+1}=\sqrt[3]{x+3}=0\) vô lí
Vậy x = -2 là nghiệm
Lần sau ghi đúng lớp!
Ta có: \(\left(ax+b\right)^3+\left(bx+a\right)^3=\left(ax+b+bx+a\right)^3-3\left(ax+b\right)\left(bx+a\right)\left(ax+b+bx+a\right)\)
\(=\left[\left(a+b\right)\left(x+1\right)\right]^3-3\left(ax+b\right)\left(bx+a\right)\left(a+b\right)\left(x+1\right)\)
Phương trình ban đầu :
<=> \(\left[\left(a+b\right)\left(x+1\right)\right]^3-3\left(ax+b\right)\left(bx+a\right)\left(a+b\right)\left(x+1\right)=\left(a+b\right)^3\left(x+1\right)^3\)
<=> \(\left(ax+b\right)\left(bx+a\right)\left(a+b\right)\left(x+1\right)=0\)(1)
TH1) Với a = 0; (1) <=> \(b\left(bx\right)b\left(x+1\right)=0\Leftrightarrow b^3x\left(x+1\right)=0\) (2)
TH2: Với a khác 0
=> phương trình ban đầu có 2 nghiệm x = 0 hoặc x = -1
<=> x = -b/a hoặc x = -a/b hoặc x = - 1
=> Phương trình ban đầu có 3 nghiệm
Kết luận:...
a, (x4-2x3+2x-1):(x2-1) = \(\frac{\left(x^4-1\right)-\left(2x^3-2x\right)}{x^2-1}\)
= \(\frac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\) =\(\frac{\left(x^2-1\right)\left(x^2+1-2x\right)}{x^2-1}\)
= \(x^2+1-2x\)= \(\left(x-1\right)^2\)
b, (8x3-6x2-5x+3):((4x+3)