K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2020

Áp dụng bất đẳng thức Cosi, ta có:

\(\left(a^2+b+c\right)\left(1+b+c\right)\ge\left(a+b+c\right)^2\)Do đó, để chứng minh bất đẳng thức đã cho, ta chỉ cần chứng minh rằng:

\(\frac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\le\sqrt{3}\)

Áp dụng bất đẳng thức Côsi lần thứ hai ta nhận được:

\(VT=\frac{\sqrt{a}\sqrt{a\left(1+b+c\right)}+\sqrt{b}\sqrt{b\left(1+c+a\right)}+\sqrt{c}\sqrt{c\left(1+a+b\right)}}{a+b+c}\)

\(\le\frac{\sqrt{\left(a+b+c\right)\left[a\left(1+b+c\right)+b\left(1+c+a\right)+c\left(1+a+b\right)\right]}}{a+b+c}\)

\(=\sqrt{1+\frac{2\left(ab+bc+ca\right)}{a+b+c}}\)

\(\le\sqrt{1+\frac{2\left(a+b+c\right)}{3}}\)

\(\le\sqrt{1+\frac{2\sqrt{3\left(a^2+b^2+c^2\right)}}{3}}=\sqrt{3}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.

6 tháng 8 2020

sửa đề thành \(a^2+b^2+c^2=3\) nhé

7 tháng 8 2020

a, (x4-2x3+2x-1):(x2-1) = \(\frac{\left(x^4-1\right)-\left(2x^3-2x\right)}{x^2-1}\) 

                                     = \(\frac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)                                                                                                                                              =\(\frac{\left(x^2-1\right)\left(x^2+1-2x\right)}{x^2-1}\)

                                      = \(x^2+1-2x\)\(\left(x-1\right)^2\)

b, (8x3-6x2-5x+3):((4x+3) 

Cách giải

Gọi x (km) là quãng đường AB (x > 0)

Thời gian đi từ A đến B: x/40 (h)

Thời đi từ B về A : x/30  (h)

Cả đi và về mất 10 giờ 30 phút = 10 1/2 ( h )  = 10,5 ( h )

Nên ta có pt: x/40 + x/30 = 10,5

Giải pt: x = 180 (TMĐK x > 0)

Vậy quãng đường AB dài 180km

Hok tốt^^

6 tháng 8 2020

+) Ta có: 10 giờ 30 phút= 10,5 giờ
+) Gọi thời gian lúc đi là x. (x>0 ) (h)
=> Thời gian lúc về là 10,5- x (h)
+) Quãng đường lúc đi là 40x (km)
Quãng đường lúc về là 30 (10,5-x) (km)
Vì đi và về trên 1 quãng đường, nên:
40x= 30(10,5-x)
<=> 40x +30x= 315
<=>70x= 315
=> x= 315/70= 4,5 (TMĐK)
Quãng đường AB dài: 4,5. 40= 180 (km)

6 tháng 8 2020

[5x-2] [x2-2x+2]

hok tốt

6 tháng 8 2020

\(5x^3-12x^2+14x-4\)

\(=5x^3-2x^2-10x^2+4x+10x-4\)

\(=x^2.\left(5x-2\right)-2x.\left(5x-2\right)+2.\left(5x-2\right)\)

\(=\left(5x-2\right)\left(x^2-2x+2\right)\)

6 tháng 8 2020

bn vào VIỆT JACK ý cái gì cũng có 

   hok tốt

+ Tính cạnh huyền của đáy :5^2 + 12^2  = 13 (cm)

+ Diện tích xung quanh của lăng trụ : ( 5 + 12 + 13 ). 8 = 240(cm2)

+ Diện tích một đáy : (5.12):2 = 30(cm2)

+ Thể tích lăng trụ : 30.8 = 240(cm3)

Hok tốt

Vì đáy là tam giác vuông nên độ dài cạnh huyền của đáy là: \(\sqrt{5^2+12^2}=\sqrt{169}=13\)

Diện tích xung quanh của hình lăng trụ đứng đấy là: (5+12+13) .8 = 240 (cm2 )

Thể tích của hình lăng trụ đứng đấy là: \(\frac{1}{2}.5+12.10=122,5\)

Gọi khoảng cách từ nhà Bình đến trường là x (km) , ( x > 0)

Thời gian Bình đi từ nhà đến trường là: x /15 (giờ) 

Thời gian Bình đi từ trường về nhà là: x /12(giờ) 

Vì thời gian về nhiều hơn thời gian đi là 6 phút = 1/10 (giờ)

Ta có PT: x /12 – x /15 = 1/10 

 <=> 5x – 4x = 6 

<=> x = 6 

Vậy nhà Bình cách trường 6km

hok tốt ^^

6 tháng 8 2020

Đổi 6 phút = 0,1 giờ

Gọi thời gian đi của Bình là a ; thời gian về của Bình là b

Ta có : b - a = 0,1 (1)

Lại có 15a = 12b (= AB)

=> 5a = 4b

Từ (1) => 4(b - a) = 0,1.4

=> 4b - 4a = 0,4

=> 5a - 4a = 0,4 (Vì 5a = 4b)

=> a = 0,4

=> S = 0,4.15 = 6

Vậy nhà Bình cách trường 6 km

Cách giải

a, 2x - x (3x + 1 ) < 15 - 3x(x + 2)

<=> 2x - 3x- x < 15 - 3x2 - 6x

<=> 7x < 15

<=> x < 15/7 Vậy Tập nghiệm của BPT là : { x / x < 15/7 }

b , BPT <=> 2(1 - 2x ) - 16 < 1 - 5x + 8x

    <=> -7x < 15

   <=> x > -15/7 Vậy tập nghiệm của BPT là : { x / x > -15/7 }

6 tháng 8 2020

a) 2x-x(3x+1) < 15-3x(x+2)

<=> 2x-3x2-x < 15-3x2-6x

<=> 2x-3x2-x+3x2+6x < 15

<=> 7x < 15

<=> x < 15/7

Vậy tập nghiệm của bất phương trình là x < 15/7

b) \(\frac{1-2x}{4}-2\le\frac{1-5x}{8}+x\)

Quy đồng mẫu ta được :

\(\frac{2-4x}{8}-\frac{16}{8}\le\frac{1-5x}{8}+\frac{8x}{8}\)

Khử mẫu

=> \(2-4x-16\le1-5x+8x\)

<=> \(-4x+5x-8x\le1-2+16\)

<=> \(-7x\le15\)

<=> \(x\ge-\frac{15}{7}\)

Vậy tập nghiệm của bất phương trình là \(x\ge-\frac{15}{7}\)

6 tháng 8 2020

5x(x-1)(2x+3) - 10x(x2-4x+5) - (x-1)(x-4)

= (5x2-5x)(2x+3)-10x3+10x2-50x -( x2-5x+4 )

= 10x3+5x2-15x-10x3+40x2-50x-x2+5x-4

= 44x2-60x-4

Thế x=3/2 ta được :

44.(3/2)2-60.3/2-4 = 99-90-4 = 5

Vậy giá trị của biểu thức = 5 khi x=3/2

5 tháng 8 2020

a) Áp dụng tính chất tia phân giác 

=> \(\frac{DB}{DC}=\frac{AB}{AC}=\frac{3}{4}\)

Áp dụng định lí Pytago => \(BC=10\)=> \(DB+DC=10\)

=> \(DB=\frac{30}{7};BC=10\)

b) Đây là 1 HTL (Đi thi ko cần phải chứng minh) (\(AH^2=HB.HC\))

c) Tam giác EBD đồng dạng tam giác ABC (gg) khi có chung góc B và BED=BAC=90 (gt)

=> \(\frac{EB}{BD}=\frac{AB}{BC}\)

=> \(EB.BC=BD.AB\)(ĐPCM)

d) Áp dụng HTL: \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

Thay AB=6; AC=8 vào: 

=> \(\frac{1}{AH^2}=\frac{25}{576}\)

=> \(AH=\frac{24}{5}\)

Ta tiếp tục áp dụng HTL: \(BH.BC=AB^2\)

Thay AB=6; BC=10 (CMT) vào ta được:

=> \(BH=\frac{36}{10}\)

Có: \(BD=\frac{30}{7}\)(CMT) => \(HD=\frac{24}{35}\)

=> Diện tích tam giác AHD = \(\frac{AH.HD}{2}=\frac{24}{35}.\frac{5}{24}:2=\frac{1}{14}\)

Vậy diện tích tam giác AHD = \(\frac{1}{14}\)(cm^2)

5 tháng 8 2020

Up hình kiểu chi nhỉ mình vẽ hình trên sketpad nma ko bt up ảnh nnao