Cho \(\widehat{xOy}\). Các điểm A và B theo thứ tự chuyển động trên Ox và Oy sao cho \(\frac{1}{OA}+\frac{1}{OB}=\frac{1}{K}\)(K là hằng số). Chứng minh rằng đường thẳng AB luôn luôn đi qua một điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(5\left(\frac{1}{x}-1\right)=\left(\frac{1}{x}-1\right)\left(x^2+1\right)\) (x khác 0)
\(\Leftrightarrow\left(x^2+1\right)\left(\frac{1}{x}-1\right)-5\left(\frac{1}{x}-1\right)=0\)
\(\Leftrightarrow\left(\frac{1}{x}-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{x}-1=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{x}=1\\x^2=4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=\pm2\end{cases}}\)
b) đk: \(x\ne-2\)
Ta có: \(\left(x^2+x+1\right)\cdot\frac{3x+1}{x+2}=\left(x^2+x+1\right)\cdot\frac{x}{2\left(x+2\right)}\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(\frac{3x+1}{x+2}-\frac{x}{2\left(x+2\right)}\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\cdot\frac{5x+2}{2\left(x+2\right)}=0\)
Vì \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow\frac{5x+2}{2\left(x+2\right)}=0\Rightarrow5x+2=0\Rightarrow x=-\frac{2}{5}\)
a) Với \(x\ne1\)ta có:
\(A=\left(\frac{x^2+2}{x^3-1}+\frac{x}{x^2+x+1}+\frac{1}{1-x}\right):\frac{x-1}{2}\)
\(=\left[\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x}{x^2+x+1}-\frac{1}{x-1}\right].\frac{2}{x-1}\)
\(=\left[\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right].\frac{2}{x-1}\)
\(=\frac{\left(x^2+2\right)+x\left(x-1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{2}{x-1}\)
\(=\frac{x^2+2+x^2-x-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{2}{x-1}\)
\(=\frac{2\left(x^2-2x+1\right)}{\left(x-1\right)^2.\left(x^2+x+1\right)}=\frac{2\left(x-1\right)^2}{\left(x-1\right)^2.\left(x^2+x+1\right)}=\frac{2}{x^2+x+1}\)
b) \(A=\frac{2}{3}\)\(\Leftrightarrow\frac{2}{x^2+x+1}=\frac{2}{3}\)
\(\Leftrightarrow x^2+x+1=3\)\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow x^2-x+2x-2=0\)\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\left(ktmĐKXĐ\right)\\x=-2\left(tmĐKXĐ\right)\end{cases}}\)
Vậy \(A=\frac{2}{3}\)\(\Leftrightarrow x=-2\)
b) Ta có: \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)\(\Rightarrow\frac{1}{x^2+x+1}\le\frac{4}{3}\forall x\)
\(\Rightarrow\frac{2}{x^2+x+1}\le\frac{8}{3}\forall x\)\(\Rightarrow A\le\frac{8}{3}\)
Dấu " = " xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\)\(\Leftrightarrow x=-\frac{1}{2}\)( thỏa mãn ĐKXĐ )
Vậy \(maxA=\frac{8}{3}\Leftrightarrow x=-\frac{1}{2}\)
\(4x^2-4x-5\left|2x-1\right|-5=0\)
\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)
\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)
\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)
TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)
\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)
\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)
TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)
\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)
\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh
Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }
2x2-x-13x2-7x-62x2-7x+33x2+13x-10
= 2x2 - 13x2 - 62x2 + 33x2 - x - 7x + 13x - 10
= -40x2 + 5x - 10
= 5 ( -8x2 + x - 2)
Ta có
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{2\left(x+2\right)^2}{x^6-1}\) ( điều kiện x khác 1 ; -1 )
\(\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{2\left(x+2\right)^2}{x^6-1}\)
\(\frac{x^2-1}{x^3-1}-\frac{x^2-1}{x^3+1}=\frac{2\left(x+2\right)^2}{x^6-1}\)
\(\frac{\left(x^2-1\right)\left(x^3+1-x^3+1\right)}{\left(x^3-1\right)\left(x^3+1\right)}=\frac{2\left(x+2\right)^2}{x^6-1}\)
\(\frac{2\left(x^2-1\right)}{x^6-1}=\frac{2\left(x+2\right)^2}{x^6-1}\)
\(\left(x^2-1\right)\left(x^6-1\right)=\left(x+2\right)^2\left(x^6-1\right)\)
\(\left(x^6-1\right)\left(4x+5\right)=0\)
\(\orbr{\begin{cases}x^6=1\\x=-\frac{5}{4}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\pm1\left(loại\right)\\x=-\frac{5}{4}\left(chọn\right)\end{cases}}\)
vậy x = -5/4
x2−2(m+1)x+m2+2=0x2−2(m+1)x+m2+2=0
Để phương trình có hai nghiệm x1,x2x1,x2 thì Δ′≥0Δ′≥0
⇔(m+1)2−m2−2≥0⇔(m+1)2−m2−2≥0
⇔2m−1≥0⇔m≥12⇔2m−1≥0⇔m≥12
Theo Vi-et ta có:
⇒{x1.x2=m2+2x1+x2=2(m+1)⇒P=m2+2−2.2(m+1)−6=m2−4m−8=(m−2)2−12(m−2)2≥0⇒P≥−12⇒{x1.x2=m2+2x1+x2=2(m+1)⇒P=m2+2−2.2(m+1)−6=m2−4m−8=(m−2)2−12(m−2)2≥0⇒P≥−12
Dấu "=" xảy ra ⇔m=2 (thỏa mãn).
Vậy m=2m=2 thì PP đạt giá trị nhỏ nhất là -12.