Cho tam giác ABC ngoại tiếp đường tròn tâm O Gọi I là tiếp điểm của BC với đường tròn tâm O biết AB . AC = 2IB.IC. tính số đo góc A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa:\(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\)
Áp dụng bđt AM-GM ta có:
\(\sqrt{\left(x+2y\right).1}\le\frac{x+2y+1}{2}\)
\(\sqrt{\left(y+2z\right).1}\le\frac{y+2x+1}{2}\)
\(\sqrt{\left(z+2x\right).1}\le\frac{z+2x+1}{2}\)
Cộng từng vế đẳng thức trên ta được:
\(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\le\frac{3\left(x+y+z\right)+3}{2}=3\)
Dấu"="xảy ra \(\Leftrightarrow x+2y=1;y+2z=1;z+2x=1;x=y=z;x+y+z=1\)
\(\Leftrightarrow x=y=z=\frac{1}{3}\)
Vậy...
Cô si lên:
\(S\ge8\sqrt[8]{\frac{abcd\left(b+c+d\right)\left(a+c+d\right)\left(a+b+d\right)\left(a+b+c\right)}{abcd\left(b+c+d\right)\left(a+c+d\right)\left(a+b+d\right)\left(a+b+c\right)}}=8\)
๖²⁴ʱČøøℓ ɮøү 2к⁷༉ Liệu điểm rơi có xảy ra ???
Dùng \(\Sigma_{cyc}\) với \(\Pi_{cyc}\) cho nó lẹ nha,chớ mik nhác lắm:((
\(S=\Sigma_{cyc}\left(\frac{a}{b+c+d}+\frac{b+c+d}{a}\right)\)
\(=\Sigma_{cyc}\left(\frac{a}{b+c+d}+\frac{b+c+d}{9a}\right)+\Sigma_{cyc}\frac{8}{9}\cdot\frac{b+c+d}{a}\)
\(\ge8\sqrt[8]{\Pi_{cyc}\frac{a}{b+c+d}\cdot\Pi_{cyc}\frac{b+c+d}{9a}}+\frac{8}{9}\left(\frac{b}{a}+\frac{c}{a}+\frac{d}{a}+\frac{a}{b}+\frac{c}{b}+\frac{d}{b}+\frac{a}{c}+\frac{b}{c}+\frac{d}{c}+\frac{a}{d}+\frac{b}{d}+\frac{c}{d}\right)\)
\(\ge\frac{8}{3}+\frac{8}{9}\cdot12\left(use:\frac{x}{y}+\frac{y}{x}\ge2\right)\)
\(=\frac{40}{3}\)
Dấu "=" xảy ra tại a=b=c=d.
P/S:Viết tắt rồi mà vẫn dài:( Thử hỏi xem nếu ko viết thì sao ??
A B C O M I N a b c c a b
Gọi M; N lần lượt là tiếp điểm của AB; AC với đường tròn.
=> BI = BM = b; AM = AN = a; CN = CI = c
Theo bài ra :
AB . AC = 2IB. IC
=> (AM + MB ) ( AN + NC) = 2IB . IC
=> ( a + b ) ( a + c ) = 2 bc
<=> a\(^2\)+ ab + ac + bc = 2bc
<=> a\(^2\)+ ab + ac = bc
<=> 2a\(^2\)+2ab + 2ac = 2bc
<=> ( a\(^2\)+ 2ab + b\(^2\)) + ( a\(^2\)+ 2ac + c\(^2\)) = b\(^2\)+ 2bc + c\(^2\)
<=> (a + b ) \(^2\)+ ( a+ c )\(^2\)= ( b + c ) \(^2\)
=> AB \(^2\)+ AC \(^2\)= BC \(^2\)
=> Tam giác ABC vuông tại A
=> ^A = 90 độ.
<=> (a2 +2ab+b2)+(a2+2ac+c2)=(b2+2bc+c2) bước này ở đâu và làm sao để xuất hiện b2 và c2 vậy ạ