cmr với mọi n>=5 ta có 1/2! + 1/3! +1/4! +....+1/n! > 0,71
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2-y^2=100.110^{2n}\)
<=> \(\left(x-y\right)\left(x+y\right)=\left(10\right)^2.11^{2n}.10^{2n}\)là số chẵn
=> x - y; x + y cùng chẵn
Đặt: 2a = x - y; 2b = x + y (b>a >0)
Khi đó: \(2a.2b=5^{2n+2}.11^{2n}.2^{2n+2}\)
<=> \(ab=5^{2n+2}.11^{2n}.2^{2n}\)
=> a là ước nguyên dương của \(5^{2n+2}.11^{2n}.2^{2n}\)
=> a có dạng \(a=5^s.11^t.2^r\) với: \(0\le s\le2n+2;0\le t\le2n;0\le r\le2n\)
Ta có: s có 2n + 3 cách chọn; t có 2n +1 cách chọn; r có 2n + 1 cách chọn
Vì s, t, r độc lập nên a có: (2n + 3)(2n + 1)( 2n +1 ) cách chọn.
Với mỗi cách chọn a có một cách chọn b => có: \(\left(2n+3\right)\left(2n+1\right)^2\) ngiệm (a;b)
Tuy nhiên chú ý: b > a> 0 và trong các cặp nghiệm (a; b ) trên có một cặp nghiệm thỏa mãn a = b.
Nên số nghiệm (a;b) thỏa mãn b> a> 0 là \(\frac{\left(2n+3\right)\left(2n+1\right)^2-1}{2}\)
Và với mỗi nghiệm (a;b) thỏa mãn đk : b > a> 0 thì có 1 cặp nghiệm (x;y)
=> Số nghiệm nguyên của phương trình ban đầu là: \(\frac{\left(2n+3\right)\left(2n+1\right)^2-1}{2}=\frac{\left(2n+2\right)\left(2n+1\right)^2+\left(2n+1\right)^2-1}{2}\)
\(=\left(n+1\right)\left(2n+1\right)^2+2n\left(n+1\right)=\left(n+1\right)\left(4n^2+6n+1\right)\)(1) ( với n nguyên dương )
Nhận xét: \(\left(4n^2+6n+1;n+1\right)=1\)(2)
Chứng minh: Thật vậy: Đặt: \(\left(4n^2+6n+1;n+1\right)=d\)
Khi đó: \(4n^2+6n+1-4\left(n+1\right)^2⋮d\)
=> \(-2n-3⋮d\)
=> \(\left(-2n-3\right)+2\left(n+1\right)⋮d\)
=> \(-1⋮d\)
=> d = 1
Từ (1); (2) số nghiệm nguyên (x; y) là số chính phương <=> \(4n^2+6n+1\)và n +1 đồng thời là hai số chính phương với mọi n nguyên dương
Mà:
\(4n^2+4n+1< 4n^2+6n+1< 4n^2+8n+4\)với mọi số nguyên dương n
=> \(\left(2n+1\right)^2< 4n^2+6n+1< \left(2n+2\right)^2\)
=> \(4n^2+6n+1\)không là số chính phương
Vậy nên số ngiệm phương trình không phải là số chính phương.
Đặt \(a=\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3\)
\(\Rightarrow A=\frac{a^2}{6a}\)
Ta cần chứng minh:
\(A=\frac{a^2}{6a}< \frac{1}{2}\)
\(\Leftrightarrow2a^2-6a< 0\)
\(\Leftrightarrow a\left(a-3\right)< 0\)(đúng)
Vậy \(A< \frac{1}{2}\)
\(\frac{\Sigma_{cyc}a^3\left(b-c\right)}{\Sigma_{cyc}a^2\left(b-c\right)}=\frac{-\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}{-\left(a-b\right)\left(b-c\right)\left(c-a\right)}=a+b+c\ge3\sqrt[3]{abc}\)