K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nếu gọi x là số gà và y là số thỏ, dựa theo đề toán ta viết hệ phương trình x + y = 35 2x + 4y = 94 Giải hệ phương trình hai ẩn số ta dễ dàng tìm thấy x = 23, y = 12. Trong “Sách toán Tôn tử” người ta đã sử dụng lí luận sau đây để đưa ra lời giải: Một nửa số chân trừ đi số đầu sẽ bằng số thỏ tức 94/2– 35 = 12 thỏ. Lấy số đầu trừ số thỏ sẽ là số gà: 35 -12 = 23. Cách giải tự nhiên và cũng hợp lôgic. Trong sách không hề đưa ra nguyên nhân đưa ra lời giải, nhưng con đường để đưa ra lời giải cũng dễ thấy. Vì gà chỉ có hai chân, thỏ có bốn chân, số chân thỏ gấp đôi số chân gà. Nếu lấy một nửa số chân trừ đi số đầu (của cả thỏ và gà) ta thấy được số đầu thỏ và từ đó dễ dàng tìm thấy số đầu gà (tức số gà trong lồng). Nếu dùng kí hiệu thay thế ta sẽ dễ dàng thấy rõ cách lập luận vừa nêu. Nếu gọi x là số gà, y là số thỏ thì 1/2(2x + 4y) – (x + y) = y Lấy tổng số thỏ và gà trừ đi số thỏ ta có (x + y) – y = x Bài toán thỏ – gà về sau xuất hiện nhiều phương án, cách giải cũng khác nhau. Ngoài cách giải trên đây có thể có cách giải khác. Ví dụ giả thiết toàn bộ số đầu trong lồng đều là đầu thỏ thì số chân ắt phải có là gấp bốn lần số đầu tức phải có 140 chân. Thực tế lại chỉ có 94 chân nên số chân thừa là 46 do ngộ nhận gà thành thỏ, mà gà có hai chân, số gà phải là một nửa số chân thừa và là 23. Và số đầu thỏ phải là tổng số đầu trừ đi số đầu gà tức số đầu thỏ là 12.

 

29 tháng 7 2021

bằng còn cái nịt

29 tháng 7 2021

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2021}-1\right)=-\frac{1}{2}.\left(-\frac{2}{3}\right)....\left(-\frac{2020}{2021}\right)\)

\(=\frac{1.2.3...2020}{2.3.4...2021}=\frac{1}{2021}\)

4 tháng 8 2021

Ta có

(1−1/2)×(1−1/3)×(1−1/4).....×(1−1/2020)×(1−1/2021)(1-1/2)×(1-1/3)×(1-1/4).....×(1-1/2020)×(1-1/2021)

=1/2×2/3×3/4.....×2019/2020×2020/2021=1/2×2/3×3/4.....×2019/2020×2020/2021

=1×2×3×.....×2019×2020/2×3×4×....×2020×2021=1×2×3×.....×2019×2020/2×3×4×....×2020×2021

=1/2021

29 tháng 7 2021

 \(N=\frac{1}{13}+\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\)

\(=\frac{3}{3.13}+\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\)

\(=\frac{3}{10}\left(\frac{10}{3.13}+\frac{10}{13.23}+\frac{10}{23.33}+..+\frac{10}{1993.2003}\right)\)

\(=\frac{3}{10}\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+\frac{1}{23}-\frac{1}{33}+...+\frac{1}{1993}-\frac{1}{2003}\right)\)

\(=\frac{3}{10}\left(\frac{1}{3}-\frac{1}{2003}\right)=\frac{3}{10}.\frac{2000}{6009}=\frac{200}{2003}\)

29 tháng 7 2021

\(N=\)\(\frac{1}{13}\)\(+\)\(\frac{3}{13.23}\)\(+\)\(\frac{3}{23.33}\)\(+...+\)\(\frac{3}{1993.2003}\)

\(N=\)\(\frac{1}{13}\)\(+\)\(\left(\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\right)\)

\(N=\)\(\frac{1}{13}\)\(+\)\(\left[\frac{3}{10}\left(\frac{1}{13.23}+\frac{1}{23.33}+...+\frac{1}{1993.2003}\right)\right]\)

\(N=\)\(\frac{1}{13}\)\(+\)\(\left[\frac{3}{10}\left(\frac{1}{13}-\frac{1}{23}+\frac{1}{23}-\frac{1}{33}+...+\frac{1}{1993}-\frac{1}{2003}\right)\right]\)

\(N=\)\(\frac{1}{13}\)\(+\)\(\left[\frac{3}{10}\left(\frac{1}{13}-\frac{1}{2003}\right)\right]\)

\(N=\)\(\frac{1}{13}\)\(+\)\(\left[\frac{3}{10}.\frac{1990}{26039}\right]\)

\(N=\)\(\frac{1}{13}\)\(+\)\(\frac{597}{26039}\)

\(N=\)\(\frac{200}{2003}\)

Trả lời:

Làm tròn các số sau đến hàng chục, trăm, nghìn, chục nghìn:   

a) 763189\(\approx\)763190

b) 198575\(\approx\)198600

c) 2398761\(\approx\)2399000

d) 1895678\(\approx\)1900000

HT

29 tháng 7 2021

ối dồi ôi bạn ơi, toán lớp 1 chứ không phải lớp 7, tôi xốk quá

4)

Ta có x/3=y/2 và x/4=z/5

=>x/12=y/8=z/15

Theo tình chất các tỉ số bằng nhau ta có 

X/12=y/8=z/15=x+y-z/12+8-15=10/5=2

=>x=2.12=24

 y=8.2=16

 z=15.2=30

Kết luận:.......

NM
29 tháng 7 2021

a. ta có :

\(\hept{\begin{cases}\left|x-1\right|+\left|x-4\right|\ge\left|x-1-x+4\right|=3\\\left|x-2\right|+\left|x-3\right|\ge\left|x-2-x+3\right|=1\\\left|2x-5\right|\ge0\end{cases}}\)

Vậy phương trình ban đầu có nghiệm \(\Rightarrow2x-5=0\Leftrightarrow x=\frac{5}{2}\)thay lại thấy thỏa mãn . Vậy x=5/2 là nghiệm

b.ta có 

\(\hept{\begin{cases}\left|x+1\right|+\left|x-1\right|\ge\left|x+1-x+1\right|=2\\\left|x+2\right|+\left|x-5\right|\ge\left|x+2-x+5\right|=7\\\left|3x+2\right|\ge0\end{cases}}\)

Vậy phương trình ban đầu có nghiệm \(\Rightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)thay lại thấy thỏa mãn . Vậy x=-2/3 là nghiệm

29 tháng 7 2021

Ta có \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

=> \(1+\frac{a+b+c+d}{a}=1+\frac{a+b+c+d}{b}=1+\frac{a+b+c+d}{c}=1+\frac{a+b+c+d}{d}\)

=> \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Khi a + b + c + d => a + b = -(c + d) ; 

b + c = -(a + d) ; 

c + d = -(a + b) 

d + a = -(b + c)

Khi đó \(M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{a+d}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}\)

= (-1) + (-1) + (-1) + (-1) = -4

Khi a + b + c + d \(\ne0\)

=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = \(\frac{2a}{2a}+\frac{2b}{2b}+\frac{2c}{2c}+\frac{2d}{2d}=2+2+2+2=8\)

Vậy khi a + b + c + d = 0 thì M = -4

khi a + b + c + d \(\ne\)0 thì M = 8

12 tháng 8 2021

thanks bn nha!!!!!!!!!!!!

28 tháng 7 2021

ok luôn bài này là max nhé :

\(A=-3,7-\left|1,7-m\right|\le-3,7\forall m\)  (vì : \(\left|1,7-m\right|\ge0\forall m\) )

" = " <=> m = 1,7

Vậy ... 

28 tháng 7 2021

giải giùm tui