a)Cho \(x+y=6\).Tính giá trị biểu thức \(P\left(x\right)=\)\(\left(x+7\right)^2\)\(+\)\(3x^2+6xy+3y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3+7\)
\(=x^3-8-\left(x^3-3x^2+3x-1\right)+7\)
\(=x^3-8+7-x^3+3x^2-3x+1\)
\(=\left(x^3-x^3\right)+\left(7+1-8\right)+3x^2-3x\)
\(=3x^2-3x=3x\left(x-1\right)\)
\(x\left(x+2\right)\left(2-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)
\(=x\left(2+x\right)\left(2-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)
\(=x\left(4-x^2\right)+\left(x+3\right)\left(x^2-3x+9\right)\)
\(=4x-x^3+\left(x^3+9\right)\)
\(=4x-\left(x^3-x^3\right)+9\)
\(=4x+9\)
Để AA là số chính phương ⇒26n+17=t2(t∈N)⇒26n+17=t2(t∈N)
⇒26n+13=t2−4⇒26n+13=t2−4
⇒13(2n+1)=(t−2)(t+2)(1)⇒13(2n+1)=(t−2)(t+2)(1)
⇒(t−2)(t+2)⋮13⇒(t−2)(t+2)⋮13⇒⎡⎣t−2⋮13t+2⋮13⇒[t−2⋮13t+2⋮13
*)Xét t+2⋮13⇒t+2=13m(m∈N)t+2⋮13⇒t+2=13m(m∈N)⇒t=13m−2⇒t=13m−2
Thay vào (1)(1)⇒13(2n+1)=13m(13m−4)⇒13(2n+1)=13m(13m−4)
⇒2n+1=m(13m−4)⇒n=13m2−4m−12⇒2n+1=m(13m−4)⇒n=13m2−4m−12
*)Xét t−2⋮13⇒t−2=13m(m∈N)t−2⋮13⇒t−2=13m(m∈N)⇒t=13m+2⇒t=13m+2
Thay vào (1)(1)⇒13(2n+1)=13m(13m+4)⇒13(2n+1)=13m(13m+4)
⇒2n+1=m(13m+4)⇒2n+1=m(13m+4)⇒n=13m2+4m−12⇒n=13m2+4m−12
Vậy.....
chúc bạn hok tốt
đặt \(\hept{\begin{cases}n+5=x^2\\n+30=y^2\end{cases}\left(x;y\in N;x,y>0\right)}\)
\(\Leftrightarrow y^2-x^2=25\Leftrightarrow\left(y-x\right)\left(y+x\right)=1.25\)(vì x,y thuộc N, x,y>0)
lại có y-x<y+x nên \(\hept{\begin{cases}y+x=1\\y+x=25\end{cases}\Leftrightarrow\hept{\begin{cases}y=13\\x=12\end{cases}}}\)
thay vào ta được n=139 thỏa mãn
Dễ thôi :D
Đặt \(\frac{n\left(2n-1\right)}{26}=q^2\) Khi đó ta được:\(n\left(2n-1\right)=26q^2\)
Do VP chẵn nên n phải là số chẵn, đặt n = 2k ( k tự nhiên )
\(\Rightarrow k\left(4k-1\right)=13q^2\)
Mặt khác \(\left(k;4k-1\right)=1\Rightarrow\hept{\begin{cases}k=a^2\\4k-1=13b^2\end{cases}}\left(h\right)\hept{\begin{cases}k=13b^2\\4k-1=a^2\end{cases}}\) với a, b là các số tự nhiên
\(TH1:k=a^2;4k-1=13b^2\Rightarrow4k=13b^2+1=12b^2+b^2+1\)
Vì vậy \(b^2\equiv3\left(mod4\right)\) vô lý vì b2 phải là số chính phương.
\(TH2:k=13b^2;4k-1=a^2\Rightarrow4k=a^2+1\) tương tự thì không tồn tại.
Vậy không tồn tại n nguyên dương sao cho \(\frac{n\left(2n-1\right)}{26}\) là số chính phương
Bài làm:
Ta có: \(A=64-\left(x-4\right)\left(x^2+4x+16\right)\)
\(A=64-x^3+64\)
\(A=128-x^3\)
Tại \(x=-\frac{1}{2}\) ta được:
\(A=128-\left(-\frac{1}{2}\right)^3=\frac{1025}{8}\)
A = 64 - ( x - 4 )( x2 + 4x + 16 )
A = 64 - ( x3 + 4x2 + 16x - 4x2 - 16x - 64 )
A = 64 - ( x3 - 64 )
A = 64 - x3 + 64
A = -x3 + 128
Thế x = -1/2 vào A ta được :
A = -(-1/2)3 + 128 = 1/8 + 128 = 1025/8
a)tứ giác ABMC là hình chữ nhật (vì là hbh có 1 góc vuông)
b)Xét tam giác ABC có:BE=AE,DB=DC=>ED là đường trung bình của tam giác ABC
=>ED//AC=>ED//AF (1)
C/M tương tự DF//AE(DF là đường trung bình của tam giác BAC) (2)
Từ (1),và (2)=>EDFA là hbh.Mà BAC^=90độ=>EDFA là hcn(hbh có 1 góc vuông)
d)ĐK:tam giác ABC là tam giác cân=>AB=AC (4)
Vì AE=1/2AB,AF=1/2AC (5)
Từ (4) và (5)=>AE=AF=>ADEF là hình vuông(vì AEDF mik đã c/m là hcn ở ý b rồi)(hcn có 2 cạnh kề bắng nhau là hình vuông)
Góc BEC=góc BFC=90 độ
=>BCEF LÀ TỨ GIÁC NỘI TIẾP
=>Góc AFE=gócC (1)
Tam giác BNC đồng dạng với tam giác BMC(g.c.g)
=>Góc BNC=góc BMC
=>BCMN là tứ giác nội tiếp
=>Góc ANM=góc AMN=góc C (2)
Từ 1 và 2
Có EF song song với MN và góc ANM=góc AMN
=>EMNF là hình thang cân
đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))
Sử dụng BĐT Svacxo ta có :
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)
bài làm của e :
Áp dụng BĐT Svacxo ta có :
\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)
Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)
Tiếp tục sử dụng Svacxo thì ta được :
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)
Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)
Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:
https://olm.vn/hoi-dap/detail/259605114604.html
Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1
chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)
Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)
anh là giởi nhất bảng sếp hạng mà còn ko làm được thì ai làm được
\(\left(x+7\right)^2+3\left(x+y\right)^2\)
\(=\left(x+7\right)^2+108\)