x,y dương x+y=2. Max
T=\(\sqrt{1+\frac{1}{x}+\frac{1}{\left(x+1\right)^2}}+\sqrt{1+\frac{1}{y}+\frac{1}{\left(y+1\right)^2}}\) +\(\frac{4}{\left(x+1\right)\left(y+1\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 nếu ko dùng casio thì tìm điểm rơi bằng đạo hàm very EZ.
\(A=x^2-3x+\frac{4}{x}+2016\)
\(=\left(x-2\right)^2+x+\frac{4}{x}+2016\)
\(\ge\left(x-2\right)^2+2\sqrt{x\cdot\frac{4}{x}}+2012\ge2016\)
Dấu "=" xảy ra tại \(x=2\)
Em không biết đạo hàm là gì (vì bác Cool Kid quá đẳng cấp, học hết kiến thức cấp 3) nên em chỉ dùng cách lớp 8 hèn mọn thôi! Mà bác Cool Kid dòng 3 nhầm cmnr
Nháp:
Giả sử A đạt min tại x = a.
Ta có: \(A=\left(x^2-2ax+a^2\right)+\left(2a-3\right)x+\frac{4}{x}+2016-a^2\)
\(\ge\left(x-a\right)^2+2\sqrt{4\left(2a-3\right)}+2016-a^2\)
Để đẳng thức xảy ra thì: \(\hept{\begin{cases}x=a\\\left(2a-3\right)x=\frac{4}{x}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=a^2\\x^2=\frac{4}{2a-3}\end{cases}}\Rightarrow a^2=\frac{4}{2a-3}\Rightarrow a=2\)
Thay ngược lại là xong. Trình bày như sau:
\(A=\left(x-2\right)^2+x+\frac{4}{x}+2012\)
\(\ge\left(x-2\right)^2+2\sqrt{x.\frac{4}{x}}+2012=2016\)
Đẳng thức xảy ra khi x = 2
3, Áp dụng BĐT Cauchy Schwarz dạng cộng mẫu thức ta có :
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=2\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Vậy ta có điều phải chứng minh
2 b
\(bđt< =>a^2c^2+b^2d^2+2abcd\le a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
\(< =>2abcd\le a^2d^2+b^2c^2\)
\(< =>a^2b^2+b^2c^2-2abcd\ge0\)
\(< =>\left(ab-cd\right)^2\ge0\)*đúng*
Dấu "=" xảy ra khi và chỉ khi \(\frac{a}{b}=\frac{c}{d}\)
Vậy ta đã hoàn tất chứng minh
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!??????????????????????????????????????????????????????????????????????????????????????????????????????????????????
1/ta có: y = mx + 3 và y = (2m + 1)x - 5 là hai hs bậc nhất nên:
\(\hept{\begin{cases}m\ne0\\2m+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne0\\m\ne-\frac{1}{2}\end{cases}}}\)
Đồ thị của hai hs đã cho là 2 đường thẳng song song vs nhau khi và chỉ khi:
\(\hept{\begin{cases}m=2m+1\\3\ne-5\left(HiểnNhien\right)\end{cases}}\)
\(\Leftrightarrow m=-1\)(thỏa mãn)
kết hợp vs điều kiện, ta có m = -1 ; \(m\ne-\frac{1}{2}\); \(m\ne0\)thì đồ thị 2 hs là 2 đường thằng song song
Sửa đề: \(T=\sqrt{1+\frac{1}{x^2}+\frac{1}{\left(x+1\right)^2}}+\sqrt{1+\frac{1}{y^2}+\frac{1}{\left(y+1\right)^2}}+\frac{4}{\left(x+1\right)\left(x+1\right)}\)
Rồi để ý: \(1+\frac{1}{x^2}+\frac{1}{\left(x+1\right)^2}=\left[\frac{1}{x}-\frac{1}{\left(x+1\right)}\right]^2+\frac{2}{x\left(x+1\right)}+1\)
\(=\left[\frac{1}{x\left(x+1\right)}\right]^2+\frac{2}{x\left(x+1\right)}+1=\left[\frac{1}{x\left(x+1\right)}+1\right]^2=\left[1+\frac{1}{x}-\frac{1}{x+1}\right]^2\)
Tương tự với y rồi thế vào căn là xong:D