Cho tam giác ABC, gọi M là trung điểm BC. Qua M kẻ ME // AC, MF//AB
a, CM AEMF là hình bình hành
b, Xác định vị trí của M để AEMF là hcn
c, Tgiac ABC cần điều kiện gì để AEMF là hcn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P+3=\frac{x^3}{y^2}+x+\frac{y^3}{z^2}+y+\frac{z^3}{x^2}+z\)
\(P+3\ge2\sqrt{\frac{x^4}{y^2}}+2\sqrt{\frac{y^4}{z^2}}+2\sqrt{\frac{z^4}{x^2}}=2\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)\)
Theo bất đẳng thức Svacso ta có
\(P+3\ge2\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)\ge2\left(\frac{\left(x+y+z\right)^2}{x+y+z}\right)=2\left(x+y+z\right)=6\)
dấu = xay ra khi x = y = z = 1
\(\Rightarrow P\ge3\)
Đề bài: Cho 3 số \(a+b+c=0\)..........
Vì \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(\Rightarrow A=a\left(a+b\right)\left(c+a\right)=a.\left(-c\right).\left(-b\right)=abc\)(1)
\(B=b\left(b+c\right)\left(a+b\right)=b.\left(-a\right).\left(-c\right)=abc\)(2)
\(C=c\left(c+a\right)\left(b+c\right)=c.\left(-b\right).\left(-a\right)=abc\)(3)
Từ (1) , (2) và (3) \(\Rightarrow A=B=C\)
3 số mà thêm d vô mần chi rứa:v
Ta có : \(a+b+c=0< =>\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
Thay vào các biểu thức A,B,C ta có :
\(\hept{\begin{cases}A=a.\left(-c\right).\left(-b\right)=abc\\B=b.\left(-a\right).\left(-c\right)=abc\\C=c.\left(-b\right).\left(-a\right)=abc\end{cases}}\)
Suy ra \(A=B=C\)
(4x - 1) - (4x + 1)(x - 2) = 12
=> 4x - 1 - 4x2 - 7x - 2 = 12
=> (4x - 7x) + (- 1 - 2) - 4x2 = 12
=> -3x - 3 - 4x2 = 12
=> -3x - 4x2 = 15
=> không tồn tại x
b. (2x - 3)(2x + 1) - (2x - 2)(2x - 2) = 15
=> 2x(2x + 1) - 3(2x + 1) - 2x(2x - 2) + 2(2x - 2) = 15
=> 4x2 + 2x - 6x - 3 - 4x2 + 4x - 4x - 4 = 15
=> (4x2 - 4x2) + (2x - 6x + 4x - 4x) + (-3 - 4) = 15
=> -4x - 7 = 15
=> -4x = 22
=> x = \(-\frac{11}{2}\)
a, \(\left(4x-1\right)-\left(4x+1\right)\left(x-2\right)=12\)
\(\Leftrightarrow4x-1-4x^2+8x-x+2=12\)
\(\Leftrightarrow11x+1-4x^2=12\)
\(\Leftrightarrow11x-11-4x^2=0\)( vô nghiệm )
b, \(\left(2x-3\right)\left(2x+1\right)-\left(2x-2\right)^2=15\)
\(\Leftrightarrow4x^2+2x-6x-3-4x^2+8x-4=15\)
\(\Leftrightarrow4x-7=15\Leftrightarrow4x=22\Leftrightarrow x=\frac{11}{2}\)
a) \(\left(4x-1\right)-\left(4x+1\right)\left(x-2\right)=12\)
\(\Leftrightarrow4x-1-\left(4x^2-7x-2\right)=12\)
\(\Leftrightarrow4x-1-4x^2+7x+2=12\)
\(\Leftrightarrow4x^2-11x+11=0\)( Pt vô nghiệm )
b) \(\left(2x-3\right)\left(2x+1\right)-\left(2x-2\right)^2=15\)
\(\Leftrightarrow\left(4x^2-4x-3\right)-\left(4x^2-8x+4\right)=15\)
\(\Leftrightarrow4x=22\)
\(\Leftrightarrow x=\frac{11}{2}\)
Ta có C = (x2 + 2xy + y2) + (y2 - 6x + 9) + 6
= (x + y)2 + (y - 3)2 + 6 \(\ge6>0\)(đpcm)
C = x2 + 2xy + y2 + y2 - 6y + 15
C = ( x2 + 2xy + y2 ) + ( y2 - 6y + 9 ) + 6
C = ( x + y )2 + ( y - 3 )2 + 6 ≥ 6 > 0 ∀ x ( đpcm )
D = x2 + y2 + 6x + 10y + 30
D = ( x2 + 6x + 9 ) + ( y2 + 10y + 25 ) - 4
D = ( x + 3 )2 + ( y + 5 )2 - 4 ≥ -4 ( xem lại đề nhớ )
\(Tacó\): \(C=x^2+2xy+y^2+y^2-6y+15\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+6\)
\(=\left(x+y\right)^2+\left(y-3\right)^2+6\)
\(Mà\)\(\left(x+y\right)^2\ge0\)với mọi x,y
\(\left(y-3\right)^2\ge0\)với mọi y
\(\Rightarrow\left(x+y\right)^2+\left(y-3\right)^2+6>0\)
\(Hay\)\(x^2+2xy+y^2+y^2-6y+15>0\)\
:
a.\(\left(4x-1\right)-\left(4x+1\right).\left(x-2\right)=12\)
\(\Leftrightarrow4x-1-\left(4x^2-7x-2\right)-12=0\)
\(\Leftrightarrow4x-1-4x^2+7x+2-12=0\)
\(\Leftrightarrow-4x^2+11x-11=0\)
\(\Rightarrow4x^2-11x+11=0\)
\(\Leftrightarrow\left(2x\right)^2-2.2x.\frac{11}{4}+\frac{11^2}{4^2}-\frac{11^2}{4^2}+11=0\)
\(\Leftrightarrow\left(2x-\frac{11}{4}\right)^2+\frac{55}{16}=0\)( VÔ LÝ )
VẬY KHÔNG CÓ GIÁ TRỊ NÀO CỦA x THỎA MÃN PT ĐÃ CHO
b. \(\left(2x-3\right).\left(2x+1\right)-\left(2x-2\right)^2=15\)
\(\Leftrightarrow4x^2-4x-3-4x^2+8x-4-15=0\)
\(\Leftrightarrow4x-22=0\)\
\(\Leftrightarrow x=\frac{11}{2}\)
VẬY PT CÓ NGHIỆM x= 11/2
\(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2+1+1+1-2a-2b-2c=0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\Leftrightarrow}a=b=c=1\left(dpcm\right)\)
a) Xét tứ giác AEMF có ME//AC; MF//AB => Là hình bình hành (TC)
b) Để AEMF là HCN <=> MFA=90 độ => MF vuông góc với AC
Do M là trđ BC; MF//AB => Theo đlí đảo của đtb thì F cx là trđ của AC => Xét tam giác AMC thì MF vừa là đg cao vừa là đường trung tuyến ứng với AC => Khi đó tam giác AMC cân tại M. CMTT thì tam giác AMB cx cân tại M
Khi đó để AEMF là HCN <=> AM=MC=MB=1/2.BC
Vậy M chỉ cần ở vị trí sao cho \(AM=\frac{1}{2}BC.\) thì AEMF là HCN.
c) Theo câu b thì để AEMF là HCN <=> AM=MB=MC=1/2.BC.
<=> Tam giác ABC vuông tại A và có đường trung tuyến AM ứng với cạnh huyền BC.
Vậy tam giác ABC cần có điều kiện là vuông tại A.