Giúp mik cả 2 bài lun nha mik cần gấp
thanks nhìu
tìm x biết: 5x(x−3)2+5(x+4)(x-4)-5x3=-5x(6x-1)
bài 2:cho hình thang ABCD(AD//BC) có AC ⊥ CD, Ac là tia phân giác của ∠BAD
a)Tính ∠DAC, ∠DAB
b)Tính các góc của hình thang ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x2 + xy + y2 + 3y + 5
4A = 4x2 + 4xy + 4y2 + 12y + 20
4A = (4x2 + 4xy + y2) + (3y2 + 12y + 12) + 8
4A = (2x + y)2 + 3(y + 2)2 + 8 \(\ge\)8 \(\forall\)x;y
=> A \(\ge\)2
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x+y=0\\y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{-y}{2}\\y=-2\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy MinA = 2 khi x = 1 và y = -2
A=x+y/2 VCB
A=x : y* t/2 VCB
A=xP:1/2 VCB
A=XPL:VCB
A=x/y:vcb*t/4
hok tốt
\(x^2-6x+9=x^2-2.3x+3^2=\left(x-3\right)^2\)
\(25+10x+x^2=\left(x+5\right)^2\)
\(\frac{1}{4}a^2+2ab^2+4b^4=\left(\frac{1}{2}a\right)^2+2ab^2+\left(2b^2\right)^2=\left(\frac{1}{2}a+2b^2\right)^2\)
\(\frac{1}{9}-\frac{2}{3}y^4+y^8=\left(y^4-\frac{1}{3}\right)^2\)
\(x^2-10x+25=\left(x-5\right)^2\)
\(x^2+4xy+4y^2=\left(x+2y\right)^2\)
\(\left(3x+2\right)^2-4=\left(3x\right)\left(3x+4\right)\)
\(4x^2-25y^2=\left(2x\right)^2-\left(5y\right)^2=\left(2x-5y\right)\left(2x+5y\right)\)
\(4x^2-49=\left(2x\right)^2-7^2=\left(2x+7\right)\left(2x-7\right)\)
\(\frac{9}{25}y^4-\frac{1}{4}=\left(\frac{3}{5}y^2\right)^2-\left(\frac{1}{2}\right)^2=\left(\frac{3}{5}y^2-\frac{1}{2}\right)\left(\frac{3}{5}y^2+\frac{1}{2}\right)\)
\(x^{32}-1=\left(x-1\right)\left(x^{31}+x^{30}+...+x+1\right)\)
\(4x^2+4x+1=\left(2x\right)^2+2.2x+1^2=\left(2x+1\right)^2\)
\(x^2-20x+100=\left(x-10\right)^2\)
\(y^4-14y^2+49=\left(y^2\right)^2-2.7.y^2+7^2=\left(y^2-7\right)^2\)
a, \(\left(3x+1\right)\left(3x-1\right)-\left(x-2\right)\left(x^2+2x+4\right)=x\left(6-x^2\right)\)
\(\Leftrightarrow9x^2-3x+3x-1-\left(x^3+2x^2+4x-2x^2-4x-8\right)=6x-x^3\)
\(\Leftrightarrow9x^2-1-\left(x^3-8\right)=6x-x^3\)
\(\Leftrightarrow9x^2-1-x^3+8=6x-x^3\)
\(\Leftrightarrow9x^2-1-x^3+8-6x+x^3=0\)
\(\Leftrightarrow9x^2+7-6x=0\)( vô nghiệm )
b, Tương tự
a, \(\left(3x+1\right)\left(3x-1\right)-\left(x-2\right)\left(x^2+2x+4\right)=x\left(6-x^2\right)\)
\(< =>9x^2-1-\left(x-2\right)\left(x^2+2x+2^2\right)=x\left(6-x^2\right)\)
\(< =>9x^2-1-\left(x^3-2^3\right)=6x-x^3\)
\(< =>9x^2-1-x^3+2^3-6x+x^3=0\)
\(< =>9x^2-6x+7=0\)
\(< =>\left(3x\right)^2-2.3x+1=-6\)
\(< =>\left(3x-1\right)^2=-6\)
Do \(\left(3x-1\right)^2\)luôn luôn lớn hơn hoặc bằng 0
Vậy phương trình trên vô nghiệm
Áp dụng HĐT a2 - b2 = ( a + b )( a - b ) ta có :
502 - 492 + 482 - 472 + ... + 22 - 12
= ( 502 - 492 ) + ( 482 - 472 ) + ... + ( 22 - 12 )
= ( 50 + 49 )( 50 - 49 ) + ( 48 + 47 )( 48 - 47 ) + ... + ( 2 + 1 )( 2 - 1 )
= 99.1 + 95.1 + ... 3.1
= 99 + 95 + ... + 3
= \(\frac{\left(99+3\right)\left[\left(99-3\right):4+1\right]}{2}\)
= 1275
Ta có: \(x^2+y^2-4x=6z-2y-z^2-14\)
\(x^2+y^2-4x-6z+2y+z^2+14=0\)
\(\left(x^2-4x+2^2\right)+\left(y^2+2y+1\right)+\left(z^2-6z+3^2\right)=0\)
\(\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0\)
\(\cdot\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)
\(\cdot\left(y+1\right)^2=0\Rightarrow y+1=0\Rightarrow y=-1\)
\(\left(z-3\right)^2=0\Rightarrow z-3=0\Rightarrow z=3\)
hok tốt!
Ta có x2 + y2 - 4x = 6z - 2y - z2 - 14
=> x2 + y2 - 4x - 6z + 2y + z2 + 14 = 0
=> (x2 - 4x + 4) + (y2 + 2y + 1) + (z2 - 6z + 9) = 0
=> (x - 2)2 + (y + 1)2 + (z - 3)2 = 0
Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2\ge0\forall x;y;z\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2=0\\y+1=0\\z-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=-1\\z=3\end{cases}}\)
Vậy x = 2 ; y = - 1 ; z = 3
Ta có: x + y = a + b
\(\Rightarrow\left(x+y\right)^2=\left(a+b\right)^2\)
\(\Rightarrow x^2+y^2=a^2+b^2\)(đpcm)
đề hơi sai!!:))
hok tốt!
Ta có : x + y = a + b (1)
=> (x + y)3 = (a + b)3
=> x3 + y3 + 3x2y + 3y2x = a3 + b3 + 3ab2 + 3a2b
=> 3x2y + 3y2x = 3ab2 + 3a2b
=> 3xy(x + y) = 3ab(a + b)
=> 3xy = 3ab
=> xy = ab
Từ (1) => (x + y)2 = (a + b)2
=> x2 + y2 + 2xy = a2 + b2 + 2ab
=> x2 + y2 = a2 + b2 (Vì xy = ab => 2xy = 2ab) (đpcm)
a. \(x^2-2xy+x^3y=x\left(x-2y+x^2y\right)\)
b. \(7x^2y^2+14xy^2-21^2y=7y\left(x^2y+2xy-63\right)\)
c. \(10x^2y+25x^3+xy^2=x\left(5x+y\right)^2\)