Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Giai đoạn | Quý I/2020 | Quý I/2021 | Quý I/2022 |
Xuất khẩu | 63,4 | 78,56 | 89,1 |
Nhập khẩu | 59,59 | 76,1 | 87,64 |
b:
Giai đoạn | Quý I/2020 | Quý I/2021 | Quý I/2022 |
Tỉ số giữa xuất và nhập | 1,06 | 1,03 | 1,01 |
c: Tổng trị giá xuất khẩu của nước ta trong quý I giai đoạn 2020-2022 là:
63,4+78,56+89,1=231,06(tỉ USD)
d: Tổng trị giá nhập khẩu của nước ta trong quý I giai đoạn 2020-2022 là:
59,59+76,1+87,64=223,33(tỉ USD)
e: Trị giá xuất khẩu trong quý I/2020 so với quý I/2021 thì giảm:
\(\dfrac{78,56-63,4}{63,4}\simeq23,91\%\)
f: Trị giá nhập khẩu trong quý I/2021 so với quý I/2020 thì tăng:
\(\dfrac{76,1-59,59}{59,59}-100\%\simeq27.71\%\)
a)
b) Hàm số y=-x+4 cắt Oy tại \(\left(0;4\right)\) \(\Rightarrow A\left(0;4\right)\)
Hàm số y=x-4 cắt Oy tại \(\left(0;-4\right)\) \(\Rightarrow B\left(0;-4\right)\)
Ta có pt hoành độ giao điểm của y=-x+4 và y=x-4 là:
\(-x+4=x-4\Leftrightarrow x=4\)
\(\Rightarrow y=4-4=0\)
\(\Rightarrow C\left(4;0\right)\)
c) Ta có: \(A\left(0;4\right)\Rightarrow OA=4\)
\(B\left(0;-4\right)\Rightarrow OB=4\)
\(C\left(0;4\right)\Rightarrow OC=4\)
BC = OA + OB = 4 + 4 = 8
\(\Rightarrow S_{ABC}=\dfrac{1}{2}\cdot4\cdot8=16\) (đvdt)
a: Xác suất thực nghiệm của biến cố "Thẻ lấy ra ghi số 7" là:
\(\dfrac{6}{30}=\dfrac{1}{5}\)
b: Gọi A là biến cố "Thẻ rút ra là số nguyên tố"
=>A={2;3;5;7;11;13}
=>n(A)=6
=>\(P_A=\dfrac{6}{15}=\dfrac{2}{5}\)
=>Khi số lần rút thẻ ngày càng lớn thì xác suất thực nghiệm của biến cố A ngày càng gần với 2/5
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
Hình bình hành ABDC có \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: E đối xứng M qua AC
=>AC là đường trung trực của EM
=>AE=AM; CE=CM
ΔBAC vuông tại A
mà AM là đường trung tuyến
nên AM=CM=MB
AM=CM
AE=AM
CE=CM
Do đó: AM=MC=CE=AE
=>AMCE là hình thoi
c: AMCE là hình thoi
=>AE//CM
=>AE//BM
Xét tứ giác ABME có
AE//BM
AE=BM
Do đó: ABME là hình bình hành
=>AM cắt BE tại trung điểm của mỗi đường
mà I là trung điểm của AM
nên I là trung điểm của BE
=>B,I,E thẳng hàng
Gọi vận tốc trung bình ở lượt đi của nhóm bạn là: x (km/giờ) (ĐK:x>4)
=> vận tốc trung bình ở lượt về của nhóm bạn là: x-4 (km/giờ)
Thời gian lúc đi từ A đến B là: 24/x (giờ)
Thời gian lúc về từ B về A là: 24/x-4 (giờ)
Theo đề: Thời gian về lâu hơn thời gian đi 1 giờ nên ta có pt:
\(\dfrac{24}{x-4}-\dfrac{24}{x}=1\\ \Leftrightarrow\dfrac{24x-24\left(x-4\right)}{x\left(x-4\right)}=1\\ \Leftrightarrow24x-24x+96=x\left(x-4\right)\\ \Leftrightarrow x^2-4x=96\\ \Leftrightarrow x^2-4x-96=0\\ \Leftrightarrow\left(x-12\right)\left(x+8\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-12=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\left(nhận\right)\\x=-8\left(loại\right)\end{matrix}\right.\)
Vậy vận tốc tb ở lượt đi là: 12km/h
Đáp án: 12km/h
Giải thích các bước giải:
gọi x là tốc độ trung bình bàn đầu (km/h)
-> tốc độ trung bình lúc sau: x-4 (km/h)
vì thời gian xe đi từ B về A chậm hơn 1 giờ nên ta có phương trình:
24/x-4 - 24/x = 1
( bạn tự tính giúp mình, mình bấm máy thôi)
-> x= 12
-> tốc độ tb ban đầu là 12 km/h
\(A=-\dfrac{2}{5}x^2y.2xy^3\\ =\left(-\dfrac{2}{5}.2\right).\left(x^2.x\right).\left(y.y^3\right)\\ =-\dfrac{4}{5}x^3y^4\)
Hệ số: \(-\dfrac{4}{5}\)
Phần biến: \(x^3y^4\)
Bậc: 3+4=7
A=−52x2y.2xy3=(−52.2).(x2.x).(y.y3)=−54x3y4
Hệ số:
Phần biến:
Bậc: 3+4=7
Đặt 6x+7=a
Phương trình sẽ trở thành \(\left(a+1\right)\left(a-1\right)\cdot a^2=72\)
=>\(a^2\left(a^2-1\right)=72\)
=>\(a^4-a^2-72=0\)
=>\(\left(a^2-9\right)\left(a^2+8\right)=0\)
mà \(a^2+8>0\forall a\)
nên \(a^2-9=0\)
=>(a-3)(a+3)=0
=>(6x+7-3)(6x+7+3)=0
=>(6x+4)(6x+10)=0
=>\(\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
\(\left(6x+8\right)\left(6x+6\right)\left(6x+7\right)^2=72\left(^∗\right)\)
Đặt: \(6x+7=t\)
\(\left(^∗\right)\Rightarrow\left(t+1\right)\left(t-1\right)t^2=72\\ \Leftrightarrow\left(t^2-1\right)t^2=72\\ \Leftrightarrow t^4-t^2-72=0\\ \Leftrightarrow\left(t^4-9t^2\right)+\left(8t^2-72\right)=0\\ \Leftrightarrow t^2\left(t^2-9\right)+8\left(t^2-9\right)=0\\ \Leftrightarrow\left(t^2+8\right)\left(t^2-9\right)=0\\ \Leftrightarrow\left(t^2+8\right)\left(t-3\right)\left(t+3\right)=0\\ \)
\(\Rightarrow\left[{}\begin{matrix}t^2+8=0\left(PTVN\right)\\t-3=0\\t+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=3\\t=-3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}6x+7=3\\6x+7=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
Vậy pt có tập nghiệm: \(S=\left\{-\dfrac{2}{3};-\dfrac{5}{3}\right\}\)
Đáp án + Giải thích các bước giải:
Gọi x ( m ) là chiều dài ban đầu của khu vườn hình chữ nhật ( x∈N, x > 0 )
Gọi y ( m ) là chiều rộng ban đầu của khu vườn hình chú nhật ( y∈N , y > 0 )
Một khu vườn hình chữ nhật có chu vi là 200 m, nên ta có phương trình:
( x + y ) . 2 = 200
⇔ 2x + 2y = 200 ( 1 )
Do mở rộng đường giao thông nông thôn nên chiều dài vườn giảm 8 m và biết diện tích đất còn lại là 2080 cm² dùng để trồng cây, nên ta có phương trình:
( x - 8 ) . y = 2080 ( 2 )
Ta có: ( 1 )
2x + 2y = 200
⇔ x + y = 100
⇔ x = 100 - y
Thay y vào ( 2 ), ta được:
( 100 - y - 8 ) . y = 2080
⇔ 92y - y² = 2080
⇔ - y² + 92y - 2080 = 0
Giải phương trình, ta được:
=> 100 - 52 = 48 ( nhận )
=> 100 - 40 = 60 ( nhận )
Vậy chiều dài là 60 m và chiều rộng là 48 - 8 = 40 m
Tự vẽ hình nhé.
a) Theo bài ra ABCD là HCN
=> AD=BC (1) ; AD//BC
Do AD//BC => ADB=DBC (2 góc so le trong) hay ADN=CBM (2)
Ta có AN vuông góc với BD => AND=ANB=90
CM vuông góc với BD => CMD=CMB=90
Xét tam giác AND và tam giác CMB có
AND=CMB=90
AD=BC ( theo (1) )
ADN = CBM ( theo (2) )
=> tam giác AND= tam giác CMB (cạnh huyền-góc nhọn)
=> ND = MB (2 cạnh tương ứng) (dpcm)
b) Do AN vuông góc với BD và CM vuông góc với BD
=>AN//CM (mối quan hệ từ vuông góc đến song song)
Lại có: tam giác AND= tam giác CMB (cạnh huyền-góc nhọn)
=> AN = CM (2 cạnh tương ứng)
Xét tứ giác ANCM có AN=CM và AN//CM
=> tứ giác ANCM là hình bình hành.
c) Lại thấy AN//CM => KN // CM
Xét tứ giác KCMN có KN=CM và KN // CM
=> tứ giác KCMN là hình bình hành
=> KC // MN
=> KC//BD
Xét tứ giác DKCB có KC//BD => tứ giác DKCB là hình thang.
d) Do K là điểm đối xứng với A qua N
=>NA=NK
=> N là trung điểm của AK.
=>PN là đường trung tuyến của tam giác AKP.
Mặt khác KC//MN => CP//MB => BMP= MPC (2 góc so le trong)
Mà AMN=BMP (2 góc đồng vị)
Từ đó suy ra AMN=MPC
Vì ANM=90 nên tam giác ANM vuông tại N
=> NAM +AMN = 90
Vì MC vuông góc với BD mà BD//CP
=> MC vuông góc với CP (mqh..)
=> MCP = 90 => tam giác MCP vuông tại C => CMP+MPC=90
Do đó NAM + AMN = CMP + MPC = 90
Mà AMN=MPC
=> NAM = CMP
Xét tam giác ANM và tam giác MCP có
NAM = CMP (theo cmt)
AN=CM (từ phần b)
ANM=MCP(=90)
=> tam giác ANM = tam giác MCP (cạnh huyền-cạnh góc vuông)
=> AN=MP( 2 cạnh tương ứng)
và MN =CP ( 2 cạnh tương ứng)
Vì MN=CK và MN=CP
=> CK=CP
=> C là trung điểm của PK
=>AC là đường trung tuyến của tam giác AKP.
Do AM=MP => M là trung điểm của AP
=>KM là đường trung tuyến của tam giác AKP.
Xét tam giác AKP có PN là đường trung tuyến của tam giác AKP.
AC là đường trung tuyến của tam giác AKP.
KM là đường trung tuyến của tam giác AKP.
Từ đó suy ra PN, AC, KM đồng quy tại trọn tâm của tam giác AKP
Vậy..