Câu 1.
a) (0,5 điểm). Tính giới hạn $\underset{x\to 1}{\mathop{\lim }}\,\dfrac{2\sqrt{x+3}+x-5}{x-{{x}^{2}}}$.
b) (0,5 điểm). Tìm các số thực $a, \, b$ thỏa mãn $\underset{x\to 1}{\mathop{\lim }}\,\left( \dfrac{{{x}^{2}}+ax+b}{{{x}^{2}}-1} \right)=-\dfrac{1}{2}.$
a) lim�→12�+3+�−5�−�2=lim�→1(2�+3+(�−5))(2�+3−(�−5))(�−�2)(2�+3−(�−5))x→1limx−x22x+3+x−5=x→1lim(x−x2)(2x+3−(x−5))(2x+3+(x−5))(2x+3−(x−5))
=lim�→1−�2+14�−13−�(�−1)(2�+3−(�−5))=lim�→1−(�−1)(�−13)−�(�−1)(2�+3−(�−5))=x→1lim−x(x−1)(2x+3−(x−5))−x2+14x−13=x→1lim−x(x−1)(2x+3−(x−5))−(x−1)(x−13)
=lim�→1−(�−13)−�(2�+3−(�−5))=−32=x→1lim−x(2x+3−(x−5))−(x−13)=−23
b) lim�→1�2+��+��2−1=−12x→1limx2−1x2+ax+b=−21.
Suy ra �=1x=1 là nghiệm của tử số ⇒1+�+�=0⇔�=−�−1.⇒1+a+b=0⇔b=−a−1.
Ta có lim�→1�2+��+��2−1=lim�→1�2+��−�−1�2−1=lim�→1(�−1)(�+�+1)(�−1)(�+1)=−12.x→1limx2−1x2+ax+b=x→1limx2−1x2+ax−a−1=x→1lim(x−1)(x+1)(x−1)(x+a+1)=−21.
Do đó lim�→1�2+��+��2−1=−12x→1limx2−1x2+ax+b=−21
⇔2+�2=−12⇔�=−3,�=2.⇔22+a=−21⇔a=−3,b=2.