Trên quãng đường AB,một xe máy đi từ A đến B cùng lúc đó một xe ôtô đi từ B đến A,sau 4h hai xe gặp nhau và tiếp tục đi thì xe ôôt đến A sớm hơn xe máy đến B là 6h.Tính thời gian mỗi xe đi hết quãng đường AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5 và 12 nha bạn ơi. bộ ba pytago chứ mình không biết làm.
Gọi một cạnh góc vuông là x (x>0)
=> cạnh còn lại là : 17 - x
=> Phương trình theo định lý Py-ta-go là :
x^2 + (17 - x)^2 = 13^2
<=> x^2 + 289 - 34x + x^2 = 169
<=> 2x^2 - 34x + 120 = 0
<=> 2x^2 - 10x - 24x + 120 = 0
<=> 2x(x - 5) - 24(x - 5) = 0
<=> (2x - 24) = 0 hoặc x - 5 = 0
=> x = 12 hoặc x = 5
Vậy độ dài 2 cạnh góc vuông là : 12 cm và 5 cm
hoặc : 5 cm và 12 cm
cháu tôi học ghê thế :))
a) 3x3 - 7x2 + 17x - 5
= 3x3 - x2 - 6x2 + 2x + 15x - 5
= x2( 3x - 1 ) - 2x( 3x - 1 ) + 5( 3x - 1 )
= ( 3x - 1 )( x2 - 2x + 5 )
b) Đặt A = a2 + ab + b2 - 3a - 3b + 3
=> 4A = 4a2 + 4ab + 4b2 - 12a - 12b + 12
= ( 4a2 + 4ab + b2 - 12a - 6b + 9 ) + ( 3b2 - 6b + 3 )
= ( 2a + b - 3 )2 + 3( b - 1 )2 ≥ 0 ∀ a, b
hay 4A ≥ 0 => A ≥ 0
Dấu "=" xảy ra <=> a = b = 1
a.
\(3x^3-7x^2+17x-5=3x^3-x^2-6x^2+2x+15x-5\)
\(=\left(3x-1\right)\left[x^2-2x+5\right]\)
b.\(a^2+ab+b^2-3a-3b+3=\left(a-1\right)^2+\left(b-1\right)^2+\left(a-1\right)\left(b-1\right)\)
\(=\left[a-1+\frac{b-1}{2}\right]^2+\frac{3}{4}\left(b-1\right)^2\ge0\)
dấu bằng xảy ra khi \(a-1=b-1=0\Leftrightarrow a=b=1\)
Gọi thời gian mà đội máy làm hết công việc theo dự định là x ( ngày ; x > 2 )
=> Diện tích ruộng mà đội máy cày theo thực tế = 40x ( ha )
Thực tế mỗi ngày đội máy cày lên được 12ha => Mỗi ngày đội máy cày được 40 + 12 = 52ha
Vì vậy đội đó không những cày xong trước thời hạn 2 ngày mà còn cày thêm được 4ha
=> Ta có phương trình : 40x = 52( x - 2 ) - 4
<=> 40x = 52x - 104 - 4
<=> 40x - 52x = -108
<=> -12x = -108
<=> x = 9 ( tm )
Vậy diện tích ruộng thực tế mà đội cày = 40.9 = 360ha
Câu 1 : Nếu 2 tam giác vuông có 2 góc nhọn tương ứng bằng nhau thì chúng được gọi là đồng dạng với nhau vì đương nhiên trừ góc vuông ở cả hai tam giác vuông thì góc nhọn còn lại đương nhiên phải bằng nhau.
Câu 2 : Nếu cạnh huyền và cạnh góc vuông của tam giác này tỉ lệ với cạnh huyền và cạnh góc vuông của tam giác kia thì hai tam giác đồng dạng. Nếu hai cạnh góc vuông của tam giác này tỉ lệ với hai cạnh góc vuông của tam giác kia thì hai tam giác đồng dạng.
Gọi vận tốc của ô tô và xe máy lần lượt là: x; y (km/h) (x>y>0)
Vì sau 4h 2 xe gặp nhau nên tổng quãng đường AB bằng:
AB= 4.x+4.y = 4.(x+y) (km)
Nên thời gian ô tô và xe máy đi hết AB lần lượt là:
;
Vì ô tô đến sớm hơn xe máy 6h nên ta có pt thời gian:
4(x+y)/y−4(x+y)/x=6
⇒(4x+4y)/y−(4x+4y)/x=6
⇒4.x/y+4−4−4y/x=6
⇒x/y−y/x=6/4=3/2
Dat:x/y=t(t>0)
⇒t−1/t=3/2
⇒t^2−3/2t−1=0
⇒(t−2)(t+1/2)=0
⇒t=2(do:t>0)⇒
x/y=2
⇒x=2y
⇒AB=4.(x+y)=6x=12y
Nên thời gian ô tô và xe máy đi hết AB lần lượt là:
6x/x=6(h);12y/y=12(h)
Gọi vận tốc của ô tô và xe máy lần lượt là: x; y (km/h) (x>y>0)
Vì sau 4h 2 xe gặp nhau nên tổng quãng đường AB bằng:
AB= 4.x+4.y = 4.(x+y) (km)
Nên thời gian ô tô và xe máy đi hết AB lần lượt là:
và t2= 4/ y(h)
Vì ô tô đến sớm hơn xe máy 6h nên ta có pt thời gian:
4(x+y)/y−4(x+y)/x=6
⇒(4x+4y)/y−(4x+4y)/x=6
⇒4.x/y+4−4−4y/x=6
⇒x/y−y/x=6/4=3/2
Dat:x/y=t(t>0)
⇒t−1/t=3/2
⇒t^2−3/2t−1=0
⇒(t−2)(t+1/2)=0
⇒t=2(do:t>0)⇒
x/y=2
⇒x=2y
⇒AB=4.(x+y)=6x=12y
Nên thời gian ô tô và xe máy đi hết AB lần lượt là:
6x/x=6(h);12y/y=12(h)