Cho tứ giác ABCD có C+D = 90°. Gọi M,N,P,Q lần lượt là trung điểm của AB, BD, DC, CA. Chứng minh rằng bốn điểm M, N,P,Q cùng nằm trên 1 đường tròn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chiều dài của thửa ruộng là:
\(60\times\dfrac{5}{3}=100\left(m\right)\)
Diện tích của thửa ruộng là:
\(60\times100=6000\left(m^2\right)\)
b) Khối lượng ngô thu hoạch được là:
\(6000:100\times30=1800\left(kg\right)\)
ĐS: ...
Chiều dài thửa ruộng là:
`60` x `5 : 3 = 100 (m)`
Diện tích thửa ruộng là:
`100` x `60 = 6000 (m^2)`
`6000m^2` gấp `100m^2` số lần là:
`6000 : 100 = 60` (lần)
Số kg ngô thu được là:
`60` x `30 = 1800 (kg)`
Đổi `1800kg = 18` tạ
Đáp số: ...
ΔCAB cân tại C
mà CP là đường trung tuyến
nên CP\(\perp\)AB tại P
=>ΔPBC vuông tại P
Xét ΔCAB cân tại B có BN là đường trung tuyến
nên BN\(\perp\)AC tại N
=>ΔBNC vuông tại N
Xét tứ giác BPNC có \(\widehat{BPC}=\widehat{BNC}=90^0\)
nên BPNC là tứ giác nội tiếp đường tròn đường kính BC
=>B,P,N,C cùng thuộc đường tròn đường kính BC
=>\(R=\dfrac{BC}{2}=\dfrac{a}{2}\)
\(a)4\left(x+2\right)-\left(5x+1\right)=3x-1\\ =>4x+8-5x-1=3x-1\\ =>-x+7=3x-1\\ =>3x+1=7+1\\ =>4x=8\\ =>x=\dfrac{8}{4}=2\\ b)2\left(5x-2\right)-3\left(x-1\right)=x+2\\ =>10x-4-3x+3=x+2\\ =>7x-1=x+2\\ =>7x-x=2+1\\ =>6x=3\\ =>x=\dfrac{3}{6}=\dfrac{1}{2}\)
\(4.\left(x+2\right)-\left(5x+1\right)=3x-1\\
\Rightarrow4x+8-5x-1=3x-1\\
\Rightarrow-x+7=3x-1\\
\Rightarrow3x+x=7+1\\
\Rightarrow4x=8\\
\Rightarrow x=2\)
Vậy...
\(2.\left(5x-2\right)-3.\left(x-1\right)=x+2\\
\Rightarrow10x-4-3x+1=x+2\\
\Rightarrow7x-3
=x+2\\
\Rightarrow7x-x=2+3\\\Rightarrow6x=5\\
\Rightarrow x=\dfrac{5}{6}\)
Vậy...
\(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\\ =\dfrac{243}{729}+\dfrac{81}{729}+\dfrac{27}{729}+\dfrac{9}{729}+\dfrac{3}{729}+\dfrac{1}{729}\\ =\dfrac{243+81+27+9+3+1}{729}\\ =\dfrac{364}{729}\)
Chiều cao của hình tam giác là:
\(10,2\times2:3=6,8\left(cm\right)\)
Diện tích của hình tam giác ban đầu là:
\(\dfrac{1}{2}\times6,8\times14=47,6\left(cm^2\right)\)
ĐS: ..
Số các số hạng của C là:
\(\left(n-1\right):1+1=n\) (số)
Tổng C bằng: \(\left(n+1\right).n:2=\dfrac{n\left(n+1\right)}{2}\)
\(\text{Δ}=\left[2\left(m+3\right)\right]^2-4\cdot1\cdot\left(4m+2\right)\)
\(=4m^2+24m+36-16m-8\)
\(=4m^2+8m+28=4m^2+8m+4+24=\left(2m+2\right)^2+24>=24>0\forall m\)
=>Phương trình luôn có 2 nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+6\\x_1x_2=\dfrac{c}{a}=4m+2\end{matrix}\right.\)
\(\sqrt{x_1-1}+\sqrt{x_2-1}=3\)
=>\(x_1-1+x_2-1+2\sqrt{\left(x_1-1\right)\left(x_2-1\right)}=9\)
=>\(2m+6-2+2\sqrt{x_1x_2-\left(x_1+x_2\right)+1}=9\)
=>\(2m+4+2\sqrt{4m+2-2m-6+1}=9\)
=>\(2\sqrt{2m-3}=9-2m-4=-2m+5\)
=>\(\sqrt{8m-12}=-2m+5\)
=>\(\left\{{}\begin{matrix}-2m+5>=0\\\left(-2m+5\right)^2=8m-12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< =\dfrac{5}{2}\\4m^2-20m+25-8m+12=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< =\dfrac{5}{2}\\4m^2-28m+37=0\end{matrix}\right.\Leftrightarrow m=\dfrac{7-2\sqrt{3}}{2}\)
\(3^{x+2}+3^x+3^{x+1}=39\\ \Rightarrow3^x.9+3^x+3^x.3=39\\ \Rightarrow3^x.\left(9+1+3\right)=39\\ \Rightarrow3^x.13=39\\ \Rightarrow3^x=39:13\\ \Rightarrow3^x=3\\ \Rightarrow3^x=3^1\\ \Rightarrow x=1\)
Vậy \(x=1\)