cho a,b,c là các số thực dương thoả mãn a+b+c=3a+b+c=3
Chứng minh rằng:
\(\sqrt{\frac{a+b}{c+ab}}+\sqrt{\frac{b+c}{a+bc}}+\sqrt{\frac{c+a}{b+ca}}\ge3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo tại đây:
Câu hỏi của Phạm Tuấn Kiệt - Toán lớp 9 - Học toán với OnlineMath
\(PT\Leftrightarrow\frac{2\sqrt{2x}}{\sqrt{1+x^2}}=1-x\)
\(\Leftrightarrow\frac{8x}{1+x^2}=1-2x+x^2\)
\(\Leftrightarrow8x=1+x^2-2x-2x^3+x^2+x^4\)
\(\Leftrightarrow x^4-2x^3+2x^2-10x+1=0\)
.......................
\(a+\sqrt{1-a^2}=b+\sqrt{1-b^2}\)
\(\Rightarrow a\sqrt{1-a^2}=b\sqrt{1-b^2}\)( bình phương 2 vế rồi rút gọn )
\(\Rightarrow a^2\left(1-a^2\right)=b\left(1-b^2\right)\)
\(\Rightarrow a^4-b^4-\left(a^2-b^2\right)=0\)
\(\Rightarrow\left(a^2-b^2\right)\left(a^2+b^2\right)-\left(a^2-b^2\right)=0\)
\(\Rightarrow\left(a^2-b^2\right)\left(a^2+b^2-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a^2+b^2=1\\a=b\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}a^2+b^2=1\\a^2+b^2=2a^2=2b^2\end{cases}}\)
Đến đây có 2 trường hợp xảy ra , hình như bạn ghi thiếu gì đó
Theo công hệ thức lương trong tam giác vuông ta có :
\(AB^2=BH.BC\Leftrightarrow9=1,8.BC\Rightarrow BC=5\left(cm\right)\)
Định lý Pytago :
\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
Như vậy khi ta quay tam giác ABC quanh trục AB ta thu được hình nón có đường cao \(AB=3\) , bán kính đáy \(AC=4\) và đường sinh \(BC=5\)
Diện tích xung quanh của hình nón thu được :
\(S_{xq}=\pi rl=\pi.AC.BC=20\pi\left(cm^2\right)\)
Thể tích hình nón là :
\(V=\frac{1}{3}\pi r^2h=\frac{1}{3}.\pi.4^2.3=16\pi\) ( cm khối )
a). Gọi giao điểm của OM với (O) là K.
Xét (O), tiếp tuyến MA, MB có MA cắt MB tại M
Suy ra: OM là phân giác của góc
Xét tam giác AOB cân tại O (OA = OB = R) có OM là phân giác của góc
⇒ OM ⊥ AB tại H
Vì OIBM là tứ giác nội tiếp (chứng minh trên)
Xét (O): = số đo cung BK (góc ở tâm chắn cung BK)
= 1212 . số đo cung AB
Số đo cung BK = 1212 . số đo cung AB
Mà 2 góc này ở vị trí đồng vị
Suy ra: EA//CD
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow VT\ge3\sqrt[6]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(c+ab\right)\left(a+bc\right)\left(b+ac\right)}}\)
Chứng minh : \(3\sqrt[6]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(c+ab\right)\left(a+bc\right)\left(b+ac\right)}}\ge3\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(c+ab\right)\left(a+bc\right)\left(b+ac\right)\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\left(c+ab\right)\left(a+bc\right)\le\frac{\left(c+a+ab+bc\right)^2}{4}\)
\(=\frac{\left[b\left(a+c\right)+c+a\right]^2}{4}=\frac{\left(b+1\right)^2\left(c+a\right)^2}{4}\)
Thiết lập tương tự và thu lại ta có :
\(\Rightarrow\left(c+ab\right)^2\left(a+bc\right)^2\left(b+ac\right)^2\)
\(\le\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a^2\right)\left(b+1\right)^2\left(a+1\right)^2\left(c+1\right)^2}{64}\)
\(\Rightarrow64\left(c+ab\right)^2\left(a+bc\right)^2\left(b+ac\right)^2\)
\(\le\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\left(b+1\right)^2\left(c+1\right)^2\left(a+1\right)^2\)
\(\Leftrightarrow8\left(c+ab\right)\left(a+bc\right)\left(b+ac\right)\)
\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(b+1\right)\left(c+1\right)\left(a+1\right)\)
Cần chứng minh :
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\le8\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\le\left(\frac{3+3}{3}\right)^3=8\left(đpcm\right)\)
Chúc bạn học tốt !!!!