Tìm nghiệm nguyên dương (a,b,p) với p là số nguyên tố sao cho \(4p=b\sqrt{\frac{2a-b}{2a+b}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I G A1 B1 C1 J
Gọi G' là giao điểm của IJ và AA1
Xét \(\Delta ABC\)có B1,C1 lần lượt là trung điểm của AC,AB nên B1C1 là đường trung bình
\(\Rightarrow B_1C_1=\frac{BC}{2}\)
Tương tự : \(A_1B_1=\frac{AB}{2};A_1C_1=\frac{AC}{2}\)
Xét \(\Delta ABC\)và \(\Delta A_1B_1C_1\)có \(\frac{A_1B_1}{AB}=\frac{B_1C_1}{BC}=\frac{A_1C_1}{AC}=\frac{1}{2}\)
\(\Rightarrow\Delta A_1B_1C_1~\Delta ABC\left(c.c.c\right)\)\(\Rightarrow\widehat{B_1A_1C_1}=\widehat{BAC};\widehat{A_1B_1C_1}=\widehat{ABC}\)
Mà \(\widehat{JA_1B_1}=\frac{\widehat{B_1A_1C_1}}{2},\widehat{IAB}=\frac{\widehat{BAC}}{2},\widehat{JB_1A_1}=\frac{\widehat{A_1B_1C}}{2},\widehat{IBA}=\frac{\widehat{ABC}}{2}\)
Nên \(\widehat{JA_1B_1}=\widehat{IAB};\widehat{JB_1A_1}=\widehat{IBA}\)
Do đó \(\Delta JA_1B_1~\Delta IAB\left(g.g\right)\Rightarrow\frac{JA_1}{IA}=\frac{A_1B_1}{AB}=\frac{1}{2}\)
Mà \(\widehat{BAA_1}=\widehat{AA_1B_1}\) nên \(\widehat{IAA_1}=\widehat{IA_1A}\)Suy ra AI // A1J
Xét \(\Delta G'AI\)có AI // A1J nên \(\frac{G'A_1}{G'A}=\frac{G'J}{G'I}=\frac{JA_1}{IA}=\frac{1}{2}\Rightarrow AG'=\frac{2}{3}AA_1\)
Xét \(\Delta ABC\)có AA1 là đường trung tuyến, G' thộc đoạn thẳng AA1 và AG' = \(\frac{2}{3}AA_1\)
Do đó : G' là trọng tâm của tam giác ABC nên G' \(\equiv\)G.
Vậy I,G,J thẳng hàng và GI = 2GJ
ĐKXĐ: \(x\ne1;y\ne-\frac{1}{2}\)
\(\hept{\begin{cases}x-y=1\\\frac{1-x}{2y+1}+\frac{2y+1}{1-x}=2\end{cases}\Rightarrow\hept{\begin{cases}x=1+y\\\frac{1-\left(1+y\right)}{2y+1}+\frac{2y+1}{1-\left(1+y\right)}=2\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=1+y\\\frac{-y}{2y+1}+\frac{2y+1}{-y}=2\end{cases}\Rightarrow\hept{\begin{cases}x=1+y\\y^2+\left(2y+1\right)^2=-2y\left(2y+1\right)\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=1+y\\y^2+4y^2+4y+1=-4y^2-2y\end{cases}}\)
\(\hept{\begin{cases}x=1+y\\9y^2+6y+1=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=1+y\\\left(3y+1\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=1+y\\y=-\frac{1}{3}\end{cases}}\)
\(\Rightarrow x=1-\frac{1}{3}=\frac{2}{3}\)
Vậy hệ phương trình có nghiệm x=2/3 ; y=-1/3
1) \(x^3-3x^2y-4x^2+4y^3+16xy=16y^2\Leftrightarrow x^3-3x^2y-4x^2+4y^3+16xy-16y^2=0\)
đưa về phương trình tích : \(\left(x-2y\right)^2\left(x+y-4\right)=0\) tới đây ok chưa
3) ĐK : x \(\ge\)0 ; \(y\ge3\)\(\Rightarrow x+y>0\)
đặt \(\sqrt{x+y}=a;\sqrt{x+3}=b\)
\(\Rightarrow y-3=\left(x+y\right)-\left(x+3\right)=a^2-b^2\)
PT : \(\sqrt{x+y}+\sqrt{x+3}=\frac{1}{3}\left(y-3\right)\Leftrightarrow3\sqrt{x+y}+3\sqrt{x+3}=y-3\)
\(\Leftrightarrow3\left(a+b\right)=a^2-b^2\Leftrightarrow\left(a+b\right)\left(3-a+b\right)=0\Leftrightarrow\orbr{\begin{cases}a+b=0\\a-b=3\end{cases}}\)
Mà a + b = \(\sqrt{x+y}+\sqrt{x+3}>0\)nên loại
a - b = 3 thì \(\sqrt{x+y}-\sqrt{x+3}=3\), ta có HPT : \(\hept{\begin{cases}\sqrt{x+y}-\sqrt{x+3}=3\\\sqrt{x+y}+\sqrt{x}=x+3\end{cases}}\)
\(\Rightarrow\)\(\sqrt{x}+\sqrt{x+3}=x\Leftrightarrow\sqrt{x+3}=x-\sqrt{x}\Leftrightarrow x^2-2x\sqrt{x}-3=0\Leftrightarrow x=\left(1+\sqrt[3]{2}\right)^2\)
từ đó tìm đc y
\(B=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=1-\left(\frac{1}{x^2}+\frac{1}{y^2}-\frac{1}{x^2y^2}\right)=1-\frac{x^2+y^2-1}{x^2y^2}\)
\(B=1-\frac{\left(x+y\right)^2-2xy-1}{x^2y^2}=1-\frac{-2xy}{x^2y^2}=1+\frac{2}{xy}\)
Cô-si : \(1=x+y\ge2\sqrt{xy}\Leftrightarrow xy\le\frac{1}{4}\)
\(\Rightarrow B\ge1+\frac{2}{\frac{1}{4}}=9\)
Vậy B có GTNN bằng 9 khi x = y = \(\frac{1}{2}\)
từ gt \(\Rightarrow p=\frac{b}{4}\sqrt{\frac{2a-b}{2a+b}}\)suy ra b chẵn
Đặt b = 2k thì \(p=\frac{k}{2}\sqrt{\frac{a-k}{a+k}}\Leftrightarrow\frac{4p^2}{k^2}=\frac{a-k}{a+k}\)
đặt \(\frac{2p}{k}=\frac{m}{n}\)với ( m,n ) = 1 và d = ( a-k ; a+k ) \(\Rightarrow\hept{\begin{cases}a-k=dm^2\\a+k=dn^2\end{cases}\Rightarrow2k=d\left(n^2-m^2\right)}\)
và \(4pn=dm\left(n^2-m^2\right)\)
Nếu m,n cùng lẻ thì \(4pn=dm\left(n^2-m^2\right)⋮8\)nên p chẵn tức là p = 2 suy ra ....
Nếu m,n không cùng lẻ thì m chia 4 dư 2 ( do 2p không là số chẵn không chia hết cho 4 và \(\frac{2p}{k}\) là phân số tối giản )
Khi đó n là số lẻ nên n2 - m2 là số lẻ nên không chia hết cho 4 suy ra d là số chia hết cho 2
đặt d = 2r, ta có 2pn = rm ( n2 - m2 ) mà ( n2 - m2 , n ) = 1 \(\Rightarrow r⋮n\)
đặt r = ns ta có : 2p = s ( n - m ) ( n + m ) m . Do n-m,n+m đều lẻ nên n+m=p,n-m = 1
\(\Rightarrow s,m\le2\)và ( m,n ) = ( 1,2 ) và ( 2,3 )
với m = 1, n = 2 thì p = 3 , b = 24 , a = 20
với m = 2 , n = 3 thì p = 5, b = 30, a = 39
Vậy ....
Một bài khó hơn nha bạn tham khảo :D vô TKHĐ của tớ
Nguồn bài này là Iran MO 1998 bạn có thể tham khảo lời giải của giáo sư Titu Andresscu tại đây: