K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2023

A B C H M N

a/

Xét tg vuông ABH

\(AH^2=AM.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Xét tg vuông ACH có

\(AH^2=AN.AC\) (lý do như trên)

\(\Rightarrow AM.AB=AN.AC\)

b/

\(AN\perp AB;MH\perp AB\) => AN//MH

\(AM\perp AC;NH\perp AC\) => AM//NH

=> AMHN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một)

Mặt khác \(\widehat{A}=90^o\)

=> AMHN là HCN => AM=NH; AN=MH (cạnh đối HCN)

Xét tg vuông ABH và tg vuông ACH có

\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) )

=> tg ABH đồng dạng với tg ACH

\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{S_{ABH}}{S_{ACH}}\) (hai tg đồng dạng, tỷ số 2 diện tích bằng bình phương tỷ số đồng dạng)

\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{\dfrac{1}{2}.AB.MH}{\dfrac{1}{2}.AC.NH}\Rightarrow\dfrac{AB}{AC}=\dfrac{MH}{NH}\) lập phương 2 vế

\(\dfrac{AB^3}{AC^3}=\dfrac{MH^2.MH}{NH^2.NH}\) (1)

Xét tg vuông ABH

\(MH^2=BM.AM\) (trong tg vuông bình phương đường cao hạ tử đỉnh góc vuông bằng tích giữa hai hình chiếu của 2 cạnh góc vuông trên cạnh huyền) (2)

Xét tg vuông ACH, c/m tương tự

\(NH^2=CN.AN\) (3)

Thay (2) và (3) vào (1)

(1) \(\Leftrightarrow\dfrac{AB^3}{AC^3}=\dfrac{BM.AM.MH}{CN.AN.NH}\)

Mà AM = NH; AN = MH (cmt)

\(\Rightarrow\dfrac{AB^3}{AC^3}=\dfrac{BM}{CN}\)

3 tháng 7 2023

\(\dfrac{1}{\sqrt{x}+2}-\dfrac{2}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{4-x}\left(\text{đ}k\text{x}\text{đ}:x\ge0;x\ne4\right)\\ =\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{\sqrt{x}-2-2\sqrt{x}-4-\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{-2\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{-2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =-\dfrac{2}{\sqrt{x}-2}\)

3 tháng 7 2023

dk là x khác 4 mới đúng nhee 

3 tháng 7 2023

\(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\left(ĐKXĐ:x\ge0\right)\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)}+\dfrac{10-x}{\sqrt{x}+2}\)

\(=\dfrac{x-4+10-x}{\sqrt{x}+2}\)

\(=\dfrac{6}{\sqrt{x}+2}\)

\(=\dfrac{6\left(\sqrt{x}-2\right)}{x-4}\)

3 tháng 7 2023

\(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}+1\left(\text{đ}k\text{x}\text{đ}:x\ge0;x\ne1\right)\\=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}+1-\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\=\dfrac{\sqrt{x}+1-\sqrt{x}+1+x+\sqrt{x}-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\=\dfrac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x+1}\right)}\\=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\=1\)

3 tháng 7 2023

\(\dfrac{1}{\sqrt{3}-1}-\dfrac{1}{\sqrt{3}+1}\)

\(\Leftrightarrow\dfrac{\sqrt{3}+1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\dfrac{\sqrt{3}-1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

\(\Leftrightarrow\dfrac{\sqrt{3}+1-\sqrt{3}+1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

\(\Leftrightarrow\dfrac{2}{3-1}\)

\(\Leftrightarrow1\)

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{9}=\dfrac{1}{AB^2}+\dfrac{1}{25}\)

\(\Leftrightarrow\dfrac{1}{AB^2}=\dfrac{16}{225}\)

\(\Leftrightarrow AB=\dfrac{15}{4}\)

\(AH.BC=AB.AC\)

\(3.BC=\dfrac{15}{4}.5\)

\(BC=6,25\)

\(CH=\dfrac{AC^2}{BC}=4\)

=> BH = 6,25 - 4 = 2,25 

 

3 tháng 7 2023

a) \(\left\{{}\begin{matrix}2x+3y=5\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=5\\11y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3\cdot\dfrac{9}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{27}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{28}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{14}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

Vậy: \(x=\dfrac{14}{11};y=\dfrac{9}{11}\)

4 tháng 7 2023

A C B H E F J I O

O là giao của AH và EF

\(AF\perp AB;HE\perp AB\) => AF//HE

\(AE\perp AC;HF\perp AC\) => AE//HF

=> AEHF là hình bình hành mà \(\widehat{A}=90^o\) => AEHF là HCN

\(\Rightarrow AH=EF\) (trong HCN hai đường chéo băng nhau)

\(OA=OH;OE=OF\) (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)

=> OE=OH => tg OEH cân tại O

Vì AEHF là HCN nên

\(\widehat{EAF}=\widehat{EHF}=90^o\) => A và H cùng nhìn EF dưới 1 góc vuông => AEHF là tứ giác nội tiếp đường tròn tâm O bán kính EF

Xét tg vuông BEH có

IB=IH (gt) \(\Rightarrow IE=IB=IH=\dfrac{BH}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)

=> tg IEH cân tại I \(\Rightarrow\widehat{IEH}=\widehat{IHE}\) (1)

tg OEH cân tại O (cmt) \(\Rightarrow\widehat{OEH}=\widehat{OHE}\) (2)

Mà \(\widehat{IHE}+\widehat{OHE}=\widehat{AHB}=90^o\) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{IEH}+\widehat{OEH}=\widehat{FEI}=90^o\)

\(\Rightarrow IE\perp EF\) mà EF là đường kính (O) => IE là tiếp tuyến đường tròn (O).

C/m tương tự ta cũng có \(JF\perp EF\) => JF cũng là tiếp tuyến với (O)

=> IE//JF (cùng vuông góc với EF)