Chứng minh các biểu thức sau luôn âm
C=-3x^2-6x-12
D=-4x^2-12x-15
E=-30-5x^2+10x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có BĐT sau:
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
CM: \(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)
<=> \(a^2+b^2+c^2-ab-bc-ca\ge0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (*)
=> BĐT (*) LUÔN ĐÚNG !!!!
=> \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)
=> \(3\left(ab+bc+ca\right)\le0\)
=> \(ab+bc+ca\le0\)
VẬY TA CÓ ĐPCM.
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+ac+ca\right)=0\)
Vì \(a^2+b^2+c^2\ge0\forall a;b;c\)
\(\Rightarrow2\left(ab+bc+ca\right)\le0\)
\(\Rightarrow ab+bc+ca\le0\left(đpcm\right)\)
\(B=-10-x^2-6x\)
\(\Rightarrow B=-\left(x^2+6x+10\right)\)
\(\Rightarrow B=-\left(x^2+6x+9+1\right)\)
\(\Rightarrow B=-\left[\left(x+3\right)^2+1\right]\)
Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+1\ge1\)
\(\Rightarrow-\left[\left(x+3\right)^2+1\right]\le-1\)
=> Đpcm
B=\(-10-x^2-6x\)
B=\(-x^2-6x-9-1\)
B=\(-\left(x^2+6x+9\right)-1\)
=\(-\left(x+3\right)^2-1\)
Ta có : \(\left(x+3\right)^2\ge0\forall x\)
\(-\left(x+3\right)^2\le0\)
\(-\left(x+3\right)^2-1\le-1\)
Vậy B luôn âm với mọi x
1. \(\left(x+5\right)^3-x^3-125\)
\(=x^3+15x^2+75x+125-x^3-125\)
\(=15x^2+75x\)
2. \(x^3+6x^2+12x+8=0\)
\(\Leftrightarrow x^3+2x^2+4x^2+8x+4x+8=0\)
\(\Leftrightarrow x^2\left(x+2\right)+4x\left(x+2\right)+4\left(x+2\right)=0\)
\(\Leftrightarrow\left(x^2+4x+4\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)^2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)^3=0\)
\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
5x2 - 5xy + 4y - 4x
= 5x ( x - y ) - 4 ( x - y )
= ( 5x - 4 ) ( x - y )
( x + y )3 + ( x - y )3
= 2x3 + 6xy2
= 2x ( x2 + 3y2 )
5 x^2 - 5xy + 4y - 4x
= 5x ( x - y ) - 4 ( x - y )
= ( x - y ) ( 5x - 4 )
( x + y )^3 + ( x - y )^3
= \(x^3+3x^2y+3xy^2+y^3+x^3-3x^2y+3xy^2-y^3\)
= \(2x^3+6xy^2\)
=\(2x\left(x^2+3y^2\right)\)
a) \(5x\left(x-1\right)-3x\left(x-1\right)\)
\(=2x\left(x-1\right)\)
b) \(x\left(x+y\right)-5x-5y\)
\(=x\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x-5\right)\left(x+y\right)\)
c) \(x\left(x-y\right)+y\left(y-x\right)\)
\(=\left(x-y\right)\left(x-y\right)\)
\(=\left(x-y\right)^2\)
d) \(x^2+xy+x=x\left(x+y+1\right)\)
a. 5x ( x - 1 ) - 3x ( x - 1 )
= ( 5x - 3x ) ( x - 1 )
b. x ( x + y ) - 5x - 5y
= x ( x + y ) - 5 ( x + y )
= ( x - 5 ) ( x + y )
c. x ( x - y ) + y ( y - x )
= x ( x - y ) - y ( x - y )
= ( x - y )2
d. x2 + xy + x
= x ( x + y + 1 )
C = -3x2 - 6x - 12
= -3( x2 + 2x + 1 ) - 9
= -3( x + 1 )2 - 9 ≤ -9 < 0 ∀ x ( đpcm )
D = -4x2 - 12x - 15
= -4( x2 + 3x + 9/4 ) - 6
= -4( x + 3/2 )2 - 6 ≤ -6 < 0 ∀ x ( đpcm )
E = -30 - 5x2 + 10x
= -5( x2 - 2x + 1 ) - 25
= -5( x - 1 )2 - 25 ≤ -25 < 0 ∀ x ( đpcm )
\(C=-3x^2-6x-12\)
\(\Rightarrow C=-\left(3x^2+6x+12\right)\)
\(\Rightarrow C=-\left(3x^2+6x+3+9\right)\)
\(\Rightarrow C=-\left[3\left(x+1\right)^2+9\right]\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow3\left(x+1\right)^2+9\ge9\)
\(\Rightarrow C=-\left[3\left(x+1\right)^2+9\right]\le-9\)
=> Đpcm
\(D=-4x^2-12x-15\)
\(\Rightarrow D=-\left(4x^2+12x+15\right)\)
\(\Rightarrow D=-\left[4\left(x+\frac{3}{2}\right)^2+6\right]\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow4\left(x+\frac{3}{2}\right)^2+6\ge6\)
\(\Rightarrow D=-\left[4\left(x+\frac{3}{2}\right)^2+6\right]\le-6\)
=> Đpcm
\(E=-30-5x^2+10x\)
\(\Rightarrow E=-\left(5x^2-10x+30\right)\)
\(\Rightarrow E=-\left[5\left(x-1\right)^2+25\right]\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow5\left(x-1\right)^2+25\ge25\)
\(\Rightarrow E=-\left[5\left(x-1\right)^2+25\right]\le-25\)
=> Đpcm