GIAI HE PHUONG TRINH BANG CACH ÂN PHU
\(\hept{\begin{cases}|X+1|+|Y-1|=5\\|X+1|-4Y+4=0\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}mx+2my=m+1\\x+\left(m+1\right)y=2\end{cases}}\)
Để PT trên có nghiệm duy nhất:
\(\frac{m}{1}\ne\frac{2m}{m+1}\)
\(\Rightarrow m^2+m\ne2m\)
\(\Rightarrow m^2\ne m\Rightarrow m\ne0;m\ne1\)
\(\hept{\begin{cases}mx+2my=m+1\\x\left(m+1\right)y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}mx+2my=m+1\\mx+m\left(m+1\right)y=2m\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}mx+2my=m+1\\2my-m\left(m+1\right)y=m+1-2m\left(#\right)\end{cases}}\)
Từ (#) \(2my-m\left(m+1\right)y=m+1-2m\)
\(\Leftrightarrow2my-m^2y-my=1-m\)
\(\Leftrightarrow my-m^2y=1-m\)
\(\Leftrightarrow y\left(m-m^2\right)=1-m\)
\(\Leftrightarrow y=\frac{1-m}{m-m^2}\)
\(\Leftrightarrow y=\frac{1-m}{m\left(1-m\right)}=\frac{1}{m}\)
Ta có \(x+\left(m+1\right)y=2\)
\(\Leftrightarrow x+\frac{m+1}{m}=2\)
\(\Leftrightarrow x=2-\frac{m+1}{m}=\frac{2m-m-1}{m}=\frac{m-1}{m}\)
=> PT trên ta có 1 nghiệm (x;y) = (m-1/m;1/m)
Ta có \(x+y=\frac{m-1}{m}+\frac{1}{m}=\frac{m}{m}=1\)
\(\Rightarrow y=1-x\)
=>điểm M (x;y) luôn thuộc 1 đường thẳng cố định khi m thay đổi
P/s về câu trường hợp thì mik ko chắc chắn có đúng không, bạn nên hỏi các thầy cô để chắc chắn ạ, sai-ib để mik sửa chữa ạ >:
Chuẩn hóa \(a+b+c=1\)
Khi đó BĐT cần chứng minh tương đương với
\(\frac{a\left(1-a\right)}{1-2a+2a^2}+\frac{b\left(1-b\right)}{1-2b+2b^2}+\frac{c\left(1-c\right)}{1-2c+2c^2}\le\frac{6}{5}\)
Mặt khác:
\(2a\left(1-a\right)\le\left(\frac{2a+1-a}{2}\right)^2=\frac{\left(a+1\right)^2}{4}\)
Khi đó:\(1-2a+2a^2=1-2a\left(1-a\right)\ge1-\frac{\left(a+1\right)^2}{4}=\frac{\left(1-a\right)\left(a+3\right)}{4}>0\)
\(\Rightarrow\frac{a\left(1-a\right)}{1-2a+2a^2}\le\frac{4a\left(1-a\right)}{\left(1-a\right)\left(a+3\right)}=4\cdot\frac{a}{a+3}=4\left(1-\frac{3}{a+3}\right)\)
Tương tự rồi cộng lại ta được:
\(RHS\le4\left(3-\frac{3}{a+3}-\frac{3}{b+3}-\frac{3}{c+3}\right)\le4\left(3-\frac{3\cdot9}{a+b+c+9}\right)=\frac{6}{5}\)