x,y,z>0, \(x^3+y^3+z^3=3\) . Min P=\(\frac{x^3}{3y+1}+\frac{y^3}{3z+1}+\frac{z^3}{3x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Theo bất đẳng thức tam giác ta có :
\(\Rightarrow\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}\left(1\right)}\)
Ta có : \(a+b+c=2\)
\(\Rightarrow\hept{\begin{cases}b+c=2-a\\a+b=2-c\\a+c=2-b\end{cases}\left(2\right)}\)
Từ (1) và (2)
\(\Rightarrow\hept{\begin{cases}a< 2-a\\b< 2-b\\c< 2-c\end{cases}\Rightarrow\hept{\begin{cases}2a< 2\\2b< 2\\2c< 2\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}a< 1\\b< 1\\c< 1\end{cases}\left(đpcm\right)}\)
b ) Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left(a+b-c\right)\left(c+a-b\right)\le\left(\frac{2a}{2}\right)^2=a^2\)
Tương tự ta có : \(\hept{\begin{cases}\left(a+b-c\right)\left(b+c-a\right)\le b^2\\\left(b+c-a\right)\left(c+a-b\right)\le c^2\end{cases}}\)
\(\Rightarrow\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\)
\(\Rightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow9abc\ge8\left(ab+bc+ca\right)-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(ab+bc+ca\right)+4\left(a^2+b^2+c^2\right)-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge4\left(a+b+c\right)^2-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=\frac{2}{3}\)
Chúc bạn học tốt !!!
\(n_{H_2O}=\frac{3,06}{18}=0,17mol\)
\(n_{CO_2}=\frac{6,048}{22,4}=0,27mol\)
Ta có: \(n_x=\frac{n_{H_2O}-n_{CO_2}}{1-k}\Rightarrow0,1=\frac{0,17-0,27}{1-k}\Rightarrow k=2\)
\(\Rightarrow n_{Br_2}=k.n_x=2.0,1=0,2mol\)
Vậy ......................
bạn ơi, hình như bạn nhớ nhầm rồi đấy, ko có HĐT đó đâu, mà có HĐT thức ấy nhưng a+b+c = 0 nữa cơ
Ta có : \(P=x^3+x^2y+y^3+y^2z+z^3+z^2x\)
\(=x^3+y^3+z^3+x^2y+y^2z+z^2x\)
Áp dụng BĐT Cô-si cho 3 số, ta có : \(x^2y=x.x.y\le\frac{x^3+y^3+z^3}{3}\)
tương tự : \(y^2z\le\frac{y^3+y^3+z^3}{3}\); \(z^2x\le\frac{z^3+z^3+x^3}{3}\)
\(\Rightarrow x^2y+y^2z+z^2x\le\frac{3\left(x^3+y^3+z^3\right)}{3}=x^3+y^3+z^3\)
\(\Rightarrow P\le2\left(x^3+y^3+z^3\right)\)
Áp dụng BĐT Cô-si cho 4 số, ta có : \(x^4+x^4+x^4+1\ge4\sqrt[4]{\left(x^4\right)^3.1}=4x^3\)
\(\Rightarrow3x^4+1\ge4x^3\)
Tương tự : \(3y^4+1\ge4y^3;3z^4+1\ge4z^3\)
Cộng lại theo vế, ta được : \(3\left(x^4+y^4+z^4\right)+3\ge4\left(x^3+y^3+z^3\right)\)
\(\Rightarrow2P\le4\left(x^3+y^3+z^3\right)\le3\left(x^4+y^4+z^4\right)+3=12\)
\(\Rightarrow P\le6\)
Vậy GTLN của P là 6 khi x = y = z = 1
\(2\sqrt[3]{2x-1}=x^3+1\)
\(ĐKXĐ:\forall x\in R\)
Đặt \(\sqrt[3]{2x-1}=a\)
Ta có hpt :\(\hept{\begin{cases}x^3+1=2a\\a^3+1=2x\end{cases}}\)
Tự lm theo đối xứng nha bn