cho đường tròn O và điểm K nằm ngoài đường tròn, từ K vẽ 2 tiếp tuyến BK và CK. Vẽ cát tuyến KAE cùng phía với B bờ KO. Kẻ đường kính BI, KI cắt đường tròn O tại N, kẻ CF vuông góc BI tại F, KI cắt CF tại Q, KC cắt BI tại M. Chứng minh NH vuông góc NC từ đó suy ra MQ đi qua trung điểm KB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi chiều dài và chiều rộng của hcn lần lượt là: a, b (m)
Ta có: \(\hept{\begin{cases}ab=300\\\left(a+5\right)\left(b-3\right)=300\left(1\right)\end{cases}}\)
Từ (1) \(\Rightarrow ab-3a+5b-15=300\)
\(\Leftrightarrow300-3a+5b-15=300\)\(\Leftrightarrow-3a+5b=15\)\(\Leftrightarrow3a-5b=-15\)
Đặt \(c=3a\)và \(d=-5b\)\(\Rightarrow a=\frac{c}{3}\); \(b=\frac{d}{-5}\)
Ta có hệ \(\hept{\begin{cases}\frac{c}{3}.\frac{d}{-5}=300\\c+d=-15\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{cd}{-15}=300\\c+d=-15\end{cases}}\Leftrightarrow\hept{\begin{cases}cd=-4500\\c+d=-15\end{cases}}\)
Áp dụng hệ thức Viets ta có: \(X^2-\left(-15\right)X-4500=X^2+15X-4500\)
\(\Delta=15^2-4.1.\left(-4500\right)=18225\)
\(X_1=c=\frac{-15+\sqrt{18225}}{2}=60\) hoặc \(X_2=d=\frac{-15-\sqrt{18225}}{2}=-75\)
\(\Rightarrow a=\frac{c}{3}=\frac{60}{3}=20\); \(b=\frac{-75}{-5}=15\)
\(\Rightarrow P_{hcn}=2\left(a+b\right)=2\left(20+15\right)=70\)
Vậy chu vi hcn ban đầu là 70 cm
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi vận tốc thực của ca nô là \(x\left(km/h\right)\left(x>0\right)\)
\(\Rightarrow\) Vận tốc lúc xuôi dòng là: \(x+4\left(km/h\right)\)
\(\Rightarrow\)Vận tốc lúc ngược dòng là: \(x-4\left(km/h\right)\)
\(\Rightarrow\) Thời gian lúc xuôi dòng là: \(\frac{30}{x+4}h\)
\(\Rightarrow\)Thời gian lúc ngược dòng là: \(\frac{30}{x-4}h\)
Theo bài ra ta có: \(\frac{30}{x+4}+\frac{30}{x-4}=4\left(x\ne\pm4\right)\)
\(\Leftrightarrow30\left(x-4\right)+30\left(x+4\right)=4\left(x-4\right)\left(x+4\right)\)
\(\Leftrightarrow60x=4x^2-64\)
\(\Leftrightarrow4x^2-60x-64=0\)
\(\Leftrightarrow x=16\)
Vậy vận tốc khi ca nô nước yên lặng là \(16\left(km/h\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài này em cũng không chắc lắm nha :)
Đặt \(S=x+y;P=xy\)
Ta có: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=S^3-3PS\)
Ta có hệ: \(\hept{\begin{cases}S^3-3PS+P^3=17\\S+P=5\end{cases}}\)
Lại đặt: \(S+P=S_1;SP=P_1\) ta có:
\(S^3+P^3=\left(S+P\right)^3-3SP\left(S+P\right)=S_1^2-3P_1S_1\)
Ta có hệ: \(\hept{\begin{cases}S^3_1-3P_1S_1-3P_1=17\\S_1=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}S_1=5\\P_1=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}S=2\\P=3\end{cases}}\) Hoặc \(\hept{\begin{cases}S=3\\P=2\end{cases}}\)
Vì \(S^2\ge4P\) nên chỉ có \(\hept{\begin{cases}S=3\\P=2\end{cases}}\)
Thỏa mãn \(\Rightarrow\hept{\begin{cases}x+y=3\\xy=2\end{cases}}\)
\(\Rightarrow x,y\) là nghiệm của pt:
\(X^2+3X+2=0\Leftrightarrow\orbr{\begin{cases}X=1\\X=2\end{cases}}\)
Nghiệm của hệ là: \(\left(1;2\right);\left(2;1\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi chiều dai,chiều rộng của hình chữ nhật lần lượt là a,b(a>b)
Theo đề,ta có:
2b=a+5
=>a=2b-5
(a-5)(b-2)=ab-70
<=>(2b-5)(b-2)=(2b-5)b-70
<=>2b2-9b+10=2b2-5b-70
<=>-4b=-80
=>b=20m
=>a=35m
=> Chu vi hình chữ nhật là:2(a+b)=110m
![](https://rs.olm.vn/images/avt/0.png?1311)
Phương trình hoành độ giao điểm của (P) và (d):
x2 + 2x -m2 + 1 = 0
Để thỏa mãn yêu cầu bài toán thì pt này phải có hai nghiêm phân biệt xD và xE và xD + xE = 0
Áp dụng định lý Vi-et thì xD +xE = -2 \(\Rightarrow\)m \(\in\varnothing\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(Đk:-1\le x\le3\)
Đặt: \(\hept{\begin{cases}u=\sqrt{x+1}\\v=\sqrt{3-x}\end{cases}}\) Ta suy ra:
\(u^2=x+1\)
\(3u^2-2v^2=5x-3\)
\(4u^2-v^2=5x+1\)
\(u^2+v^2=4\)
Pt đã cho trở thành:
\(2\left(3u^2-2v^2\right)+5uv^2=3\left(4u^2-v^2\right)\Leftrightarrow6u^2\left(2-u\right)=v^2\left(u+3\right)\)
Thay \(v^2=4-u\) ta thu được pt:
\(2\left(3u^2-2v^2\right)+5uv^2=3\left(4u^2-v^2\right)\)
\(\Leftrightarrow6u^2\left(2-u\right)=\left(4-u^2\right)\left(u+3\right)\Leftrightarrow\orbr{\begin{cases}u=2\\u=\frac{5+\sqrt{145}}{10}\end{cases}}\)
Từ đó tìm đc các nghiệm của pt là: \(\orbr{\begin{cases}x=3\\x=\frac{7+\sqrt{145}}{10}\end{cases}}\)