Cho a,b,c là các số thực dương thỏa mãn \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge2\)
Tìm GTLN của biểu thức A = abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét tam giác BDE và tam giác DCE có:
+)chung góc E
+)góc BDE=DCE=90độ
suy ra tam giác BDE đồng dạng tam giác DCE(g-g)
b,Xét tam giác CHD và tam giác DCB có:
+)góc DCH=góc BDC
+)góc DHC=góc BCD
suy ra tam giác CHD đồng dạng tam giác DCB
c,Do BD vuông DE và HC vuông DE
=>BD//HC
=>CK/OB=EK/EO=HK/OD(bn suy ra từ ta-lét)
Mà OB=OD =>CK=HK=>K là trung điểm của CH.
Tỉ số bn dựa vào phần a,b
d,Gọi F là giao điểm của KF và DC(Bây h mình k vt hẳn chữ góc ra nx)
Vì HC//BD nên:
=>HCBD là hình thang
=>BH và DC là 2 đường chéo cắt nhau tại F(*)
Xét tam giác OFD và tam giác KFC,có:
+) ECK= ODF(do BD//CH)
+)DÒF=CKE(Do OD//KC và 2 góc ở vị trí sole trong)
Suy ra tam giác OFD đồng dạng tam giác KFC(g-g)
=>OFD=KFC mà 2 góc ở vị trí đối đỉnh nên
=> DC cắt OK tại F
=>BOK+OKC=180độ(2 góc trong cùng phía)
mà BOK=OKC(do KC//BO) mà 2 góc ở vị trí đồng vị nên
=>CKE+OKC=180 độ
=>O;K;E thẳng hàng mà DC cắt OK tại F nên
=>DC cắt OF tại F(**)
từ (*) và (**) suy ra:
OE;CD;BH thẳng hàng.
Đề: Cho ∆ABC nhọn, 3 đường cao AM, BN, CP đồng quy tại H. a) Chứng minh: ∆ABM ∽ ∆AHP và ∆ABH ∽ ∆AMP; b) Chứng minh: MH.MA = MB.MC; c) Chứng minh: ∆AHB ∽ ∆NHM; d) Chứng minh: ∆MAP ∽ ∆MNH
Giải
ĐKXĐ : \(x\ne\pm2\)
\(A=\left[\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\div\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)
\(=\left[\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\right]\div\left(\frac{x^2-4+10-x^2}{x+2}\right)\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}\times\frac{x+2}{6}=-\frac{1}{x-2}\)
\(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{7x-3}{9-x^2}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow\frac{x-1}{x+3}+\frac{x}{3-x}=\frac{7x-3}{9-x^2}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(3-x\right)+x\left(x+3\right)}{\left(x+3\right)\left(3-x\right)}=\frac{7x-3}{\left(3-x\right)\left(x+3\right)}\)
\(\Rightarrow3x-x^2-3+x+x^2+3x=7x-3\)
\(\Leftrightarrow7x-3=7x-3\Leftrightarrow0x=0\)
Vậy phương trình có vô số nghiệm
Trả lời:
\(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{7x-3}{9-x^2}\)\(\left(ĐKXĐ:x\ne\pm3\right)\)
\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{3-7x}{x^2-9}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{x^2-9}-\frac{x\left(x+3\right)}{x^2-9}=\frac{3-7x}{x^2-9}\)
\(\Rightarrow x^2-3x-x+3-\left(x^2+3x\right)=3-7x\)
\(\Leftrightarrow x^2-4x+3-x^2-3x=3-7x\)
\(\Leftrightarrow3-7x=3-7x\)
\(\Leftrightarrow-7x+7x=3-3\)
\(\Leftrightarrow0x=0\)( luôn thỏa mãn )
Vậy \(S=ℝ\)với \(x\ne\pm3\)
\(x^3-6x^2+10x-8=0\)
\(\Leftrightarrow\left(x^3-4x^2\right)-\left(2x^2-8x\right)+\left(2x-8\right)=0\)
\(\Leftrightarrow x^2\left(x-4\right)-2x\left(x-4\right)+2\left(x-4\right)=0\)
\(\Leftrightarrow\left(x^2-2x+2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2x+2=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=-1\left(vn\right)\\x=4\end{cases}}\Leftrightarrow x=4\)(vn : vô nghiệm).
Vậy phương trình có nghiệm duy nhất : \(x=4\)
a) Xét \(\Delta BAC\)có phân giác BD (giả thiết).
\(\Rightarrow\frac{BA}{BC}=\frac{AD}{CD}\)(tính chất).
\(\Rightarrow\frac{BA}{BC+BA}=\frac{AD}{CD+AD}=\frac{AD}{AC}\)(tính chất của tỉ lệ thức).
\(\Rightarrow\frac{6}{10+6}=\frac{AD}{8}\)(thay số).
\(\Rightarrow\frac{6}{16}=\frac{AD}{8}\)
\(\Rightarrow AD=\frac{6}{16}.8=\frac{3}{8}.8=3\left(cm\right)\)
Do đó \(CD=AC-AD=8-3=5\left(cm\right)\)
Vậy \(AD=3cm,CD=5cm\)
ta có
\(\frac{x^2}{x-1}\)\(=\frac{x^2-1}{x-1}+\frac{1}{x-1}=x+1+\frac{1}{x-1}=\left(x-1\right)+\frac{1}{x-1}+2\)
áp dụng bất đẳng thức AM-GM với các số thực dương ta có
\(\left(x-1\right)+\frac{1}{x-1}\ge2\sqrt{\left(x-1\right)\frac{1}{x-1}=2}\)
dấu "=" xảy ra khi
\(\Leftrightarrow x-1=\frac{1}{x-1}\)
\(\left(x-1\right)^2=1\)
\(\Leftrightarrow x=2\)
\(\Rightarrow p\ge2+2=4\)
VẬY MINP là
\(4\Leftrightarrow x=1\)
cảm ơn nhé nhưng còn cách khác không vì mình cũng làm giống như này :P
Lớn hơn hoặc bằng hay là bằng?
Đinh Chỉ Tịnh ≥