Cho x,y là các số dương thoả mãn \(x^2+y^2=1\).
Tìm min của \(A=\left(1+x\right)\left(1+\frac{1}{y}\right)+\left(1+y\right)\left(1+\frac{1}{x}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(a=\sqrt{2+x};b=\sqrt{2-x}\left(a,b\ge0\right)\)
\(\Rightarrow\hept{\begin{cases}a^2+b^2=4\\a^2-b^2=2x\end{cases}}\)
\(\Rightarrow A=\frac{\sqrt{2+ab}\left(a^3-b^3\right)}{4+ab}=\frac{\sqrt{2+ab}\left(a-b\right)\left(a^2+b^2+ab\right)}{4+ab}\)
\(\Rightarrow A=\frac{\sqrt{2+ab}\left(a-b\right)\left(4+ab\right)}{4+ab}=\sqrt{2+ab}\left(a-b\right)\)
\(\Rightarrow A\sqrt{2}=\sqrt{4+2ab}\left(a-b\right)\)
\(\Rightarrow A\sqrt{2}=\sqrt{\left(a^2+b^2+2ab\right)}\left(a-b\right)=\left(a+b\right)\left(a-b\right)\)
\(\Rightarrow A\sqrt{2}=a^2-b^2=2x\)
\(\Rightarrow A=x\sqrt{2}\)
1
\(x^2-4mx+4m^2-2=0\)
\(\Leftrightarrow\left(x-2m\right)^2-2=0\)
\(\Leftrightarrow\left(x-2m+\sqrt{2}\right)\left(x-2m-\sqrt{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2m-\sqrt{2}\\x=2m+\sqrt{2}\end{cases}}\)
Vậy............
\(\hept{\begin{cases}x^2+y^2+\frac{8xy}{x+y}=16\\2x^2-5x+2\sqrt{x+y}-\sqrt{3x-2}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=16-\frac{8xy}{x+y}\\2x^2=5x-2\sqrt{x+y}+\sqrt{3x-2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-3y+6=0\\3x-y+7=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy pt có \(n_oS=\left\{2;1\right\}\)
ta có \(x^2_2=2mx_2-m^2+m-1\)
nên ta có \(2m\left(x_1+x_2\right)-m^2+m-1=10m-1\)
theo vi-et ta có :\(x_1+x_2=2m\Rightarrow3m^2-9m=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=3\end{cases}}\)
thay nguowijc lại thấy m=3 thỏa mãn đề bài
Đặt \(x=a+1;y=b+1;z=c+1\Rightarrow0\le a,b,c\le2\)và \(a+b+c=3\)
Chứng minh : \(\left(a+1\right)^3+\left(b+1\right)^3+\left(c+1\right)^3\le36\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a^2+b^2+c^2\right)\le24\). Không mất tính tổng quát, giả sử \(2\ge a\ge b\ge c\ge0\) thì:
\(3a\ge a+b+c=3\Rightarrow2\ge a\ge1\Rightarrow\left(a-1\right)\left(a-2\right)\le0\)
Theo kết quả bài này thì \(a^2+b^2+c^2\le5\) (em làm thế này cho ngắn, lúc trình bày vô bài làm thì anh ghi cả chứng minh vô luôn nha!). Vậy ta chỉ cần chứng minh: \(a^3+b^3+c^3\le9\).
Ta có: \(a^3+b^3+c^3\le a^3+b^3+c^3+3bc\left(b+c\right)\)
\(=a^3+\left(b+c\right)^3=a^3+\left(3-a\right)^3\)
\(=9\left(a-1\right)\left(a-2\right)+9\le9\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(2;1;0\right)\) và các hoán vị.
Ta có: \(A=\left(1+x\right)\left(1+\frac{1}{y}\right)+\left(1+y\right)\left(1+\frac{1}{x}\right)\)
\(=1+\frac{1}{y}+x+\frac{x}{y}+1+\frac{1}{x}+y+\frac{y}{x}\)
\(=\left(x+\frac{1}{2x}\right)+\left(y+\frac{1}{2y}\right)+\left(\frac{y}{x}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)+2\)
Lại có: \(x,y\in Z^+\) nên ta có:
Dấu " = " xảy ra \(\Leftrightarrow x=\frac{1}{\sqrt{2}}\)
Dấu " = " xảy ra \(\Leftrightarrow y=\frac{1}{\sqrt{2}}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
Từ trên ta suy ra: \(A\ge3\sqrt{2}+4\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
Vậy \(A_{Min}=3\sqrt{2}+4\)
\(A=\left(x+y\right)+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{1}{x}+\frac{1}{y}\right)+2\ge x+y+\frac{4}{x+y}+4\)
\(\Rightarrow A\ge\left(x+y+\frac{2}{x+y}\right)+\frac{2}{x+y}+4\ge2\sqrt{2}+4+\frac{2}{\sqrt{2\left(x^2+y^2\right)}}=3\sqrt{2}+4\)