Bài 1 : Tính giá trị của biểu thức sau bằng phương pháp dung hằng đẳng thức
B \(=\left(a+2b-3c-d\right)\)\(\times\left(a+2b+3c+d\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,3x3-x2-21x+7
=(3x3-x2)-(21x-7)
=x2(3x-1)-7(3x-1)
=(3x-1)(x2-7)
b,x3-4x2+8x-8
=(x3-8)-(4x2-8x)
=(x-2)(x2+2x+4)-4x(x-2)
=(x-2)(x2+2x-4x+4)
=(x-2)(x2-2x+4)
c,x3-5x2-5x+1
=(x3+1)-(5x2+5x)
=(x+1)(x2-x+1)-5x(x+1)
=(x+1)(x2-x-5x+1)
=(x+1)(x2-6x+1)
d,x2y-xz+z-y
=(x2y-y)-(xz-z)
=y(x2-1)-z(x-1)
=y(x+1)(x-1)-z(x-1)
=(x-1)(x+y-z+1)
e,x4-x3-x2-1
=(x4-x2)-(x3+1)
=x2(x2-1)-(x+1)(x2-x+1)
=x2(x-1)(x+1)-(x+1)(x2-x+1)
=(x+1)(x2+x-1-x2+x-1)
=(x+1)(2x-2)
=2(x+1)(x-1)
Ta có : \(\left(x+1\right)^4\ge0\forall x\)
\(\left(x+3\right)^4\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^4+\left(x+3\right)^4\ge0\forall x\)
Dấu = xảy ra khi : \(\left(x+1\right)^4+\left(x+3\right)^4=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^4=0\\\left(x+3\right)^4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\x=-3\end{cases}\left(ktm\right)}\)
\(\Rightarrow\)phương trình vô ngiệm
Ta có :
\(\left(x+1\right)^4\ge0\forall x\)
\(\left(x+3\right)^4\ge0\forall x\)
Phương trình = 0 \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^4=0\\\left(x+3\right)^4=0\end{cases}}\)
\(\hept{\begin{cases}x+1=0\\x+3=0\end{cases}}\)
\(\hept{\begin{cases}x=-1\\x=-3\end{cases}}\)
\(x\in\varnothing\)
a, A=xy+7x-3y-21 b,B= xyz+xz-yz-z+xy+x-y-1
A=(xy+7x)-(3y+21) B=(xyz+xz)-(yz+z)+(xy+x)-(y+1)
A=x(y+7)-3(y+7) B=xz(y+1)-z(y+1)+x(y+1)-(y+1)
A=(y+7)(x-3) B=(y+1)(xz-z+x-1)
Thay x=103, y=-17 vào biểu thức ta có: B=(y+1)[(xz-z)+(x-1)]
A=(-17+7)(103-3) B=(y+1)[z(x-1)+(x-1)]
A=(-10)(100) B=(y+1)(x-1)(z+1)
A=-1000 Thay x=-9, y=-21, z=-31 vào biểu thức ta có:
B=(-21+1)(-9-1)(-31+1)
B=(-20)(-10)(-30)
B=200(-30)
B=-6000
x11 + x10 + 1
= ( x11 - x9 + x8 - x6 + x5 - x3 + x2 ) + ( x10 - x8 + x7 - x5 + x4 - x2 + x ) + ( x9 - x7 + x6 - x4 + x3 - x + 1 )
= x2 ( x9 - x7 + x6 - x4 + x3 - x + 1 ) + x( ( x9 - x7 + x6 - x4 + x3 - x + 1 ) + 1( x9 - x7 + x6 - x4 + x3 - x + 1 )
= ( x2 + x + 1 ) ( x9 - x7 + x6 - x4 + x3 - x + 1 )
Chỗ nào không hiểu thì ib nhé :)
x11+x10+1
=x11+x10+x9-x9-x8-x7+x8+x7+x6-x6-x5-x4+x5+x4+x3-x3-x2-x+x2+x+1
=(x11+x10+x9)-(x9+x8+x7)+(x8+x7+x6)-(x6+x5+x4)+(x5+x4+x3)-(x3+x2+x)+(x2+x+1)
=x9(x2+x+1)-x7(x2+x+1)+x6(x2+x+1)-x4(x2+x+1)+x3(x2+x+1)-x(x2+x+1)+(x2+x+1)
=(x2+x+1)(x9-x7+x6-x4+x3-x+1)
Bài làm:
Ta có:
(a-b)2+(b-c)2+(c-a)2=(a+b-2c)2+(b+c-2a)2+(c+a-2b)2
<=> a2-2ab+b2+b2-2bc+c2+c2-2ca+a2=6a2+6b2+6c2-6(ab+bc+ca)
<=> \(4a^2+4b^2+4c^2-4ab-4bc-4ca=0\)
<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
<=> \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Rightarrow a=b=c\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2\)
\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2-4ab-4bc-4ca=\left(a+b\right)^2\)
\(+\left(b+c\right)^2+\left(c+a\right)^2-4\left(b+c\right)a+4a^2-4\left(c+a\right)b+4b^2-4\left(a+b\right)c+4c^2\)
\(\Leftrightarrow-4ab-4bc-4ca=-4\left(b+c\right)a+4a^2-4\left(c+a\right)b+4b^2-4\left(a+b\right)c+4c^2\)
\(\Leftrightarrow ab-\left(a+b\right)c+c^2+bc-\left(b+c\right)a+a^2+ca-\left(c+a\right)b+b^2=0\)
\(\Leftrightarrow ab-ac-bc+c^2+bc-ba-ca+a^2+ca-cb-ab+b^2=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
Đặt a+2b là x; 3c+d là y
Ta có (x-y)(x+y)=x2-y2
=(a+2b)2-(3c+d)2
=a2+4b2-9c2-d2+4ab-6cd