Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất
G = 5x2 + 5y2 + 8xy + 2y - 2x + 2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
G = 5x2 + 5y2 + 8xy + 2y - 2x + 2020
G = ( 4x2 + 8xy + 4y2 ) + ( x2 - 2x + 1 ) + ( y2 + 2y + 1 ) + 2018
G = ( 2x + 2y )2 + ( x - 1 )2 + ( y + 1 )2 + 2018
\(\hept{\begin{cases}\left(2x+2y\right)^2\\\left(x-1\right)^2\\\left(y+1\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2+2018\ge2018\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x+2y=0\\x-1=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)
=> MinG = 2018 <=> x = 1 ; y = -1
Ta có : \(x^4-3x^3+4x^2-3x+10.\)
\(=\left(x^4-2x^3+x^2\right)-\left(x^3-3x^2+3x-1\right)+9\)
\(=x^2\left(x-1\right)^2-\left(x-1\right)^3+9\)
\(=\left(x-1\right)^2\left(x^2-x+1\right)+9\)
Mà \(\left(x-1\right)^2\ge0\)
\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
\(\Rightarrow\left(x-1\right)^2\left(x^2-x+1\right)\ge0\)
\(\Rightarrow\left(x-1\right)^2\left(x^2-x+1\right)+9\ge9\)
Dấu " = " xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy GTNN cảu \(x^4-3x^3+4x^2-3x+10.\)là 9 <=> \(x=1\)
F = 5x2 + 2y2 + 4xy - 2x + 4y + 8
F = ( 4x2 + 4xy + y2 ) + ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) + 3
F = ( 2x + y )2 + ( x - 1 )2 + ( y + 2 )2 + 3
\(\hept{\begin{cases}\left(2x+y\right)^2\\\left(x-1\right)^2\\\left(y+2\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\ge3\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x+y=0\\x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy MinF = 3 <=> x = 1 , y = -2
G = 5x2 + 5y2 + 8xy + 2y + 2020
= x2 + ( 4x2 + 8xy + 4y2 ) + ( y2 + 2y + 1 ) + 2019
= x2 + ( 2x + 2y )2 + ( y + 1 )2 + 2019
\(\hept{\begin{cases}x^2\\\left(2x+2y\right)^2\\\left(y+1\right)^2\end{cases}}\ge0\forall x,y\Rightarrow x^2+\left(2x+2y\right)^2+\left(y+1\right)^2+2019\ge2019\forall x,y\)
Tuy nhiên đẳng thức không xảy ra :P
Bài làm:
1) Ta có: \(2x^2+5xy+2y^2\)
\(=\left(2x^2+4xy\right)+\left(xy+2y^2\right)\)
\(=2x\left(x+2y\right)+y\left(x+2y\right)\)
\(=\left(2x+y\right)\left(x+2y\right)\)
2) Ta có: \(2x^2+2xy-4y^2\)
\(=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)\)
\(=2x\left(x-y\right)+4y\left(x-y\right)\)
\(=2\left(x+2y\right)\left(x-y\right)\)
\(1)2x^2+5xy+2y^2=2x^2+4xy+xy+2y^2=\left(2x^2+4xy\right)+\left(xy+2y^2\right)=2x\left(x+2y\right)+y\left(x+2y\right)=\left(2x+y\right)\left(x+2y\right)\)\(2)2x^2+2xy-4y^2=2x^2+4xy-2xy-4y^2=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)=2x\left(x-y\right)+4y\left(x-y\right)=\left(2x+4y\right)\left(x-y\right)\)
Bài làm:
Ta có: \(2x^2-3xy-2y^2\)
\(=\left(2x^2-4xy\right)+\left(xy-2y^2\right)\)
\(=2x\left(x-2y\right)+y\left(x-2y\right)\)
\(=\left(2x+y\right)\left(x-2y\right)\)
A B C D I J M N
Hình hơi đểu tí:v
Bài làm:
Gọi M,N là trung điểm của AD,BC
Ta có: M,J lần lượt là trung điểm AD,AC => MJ là đường trung bình của tam giác ADC
=> MJ // CD và MJ = CD/2 (1)
Lại có N,J lần lượt là trung điểm của BC,AC => NJ là đường trung bình của tam giác ABC
=> NJ // AB , mà AB // CD // MN => J thuộc đường trung bình MN của hình thang ABCD
Tương tự ta CM được I cũng thuộc đường trung bình MN của hình thang ABCD và MI = AB/2 (2)
=> IJ trung với MN => IJ // AB (3)
Mặt khác, trừ vế (1) cho (2) ta được:
\(MJ-MI=\frac{CD}{2}-\frac{AB}{2}\)=> \(IJ=\frac{CD-AB}{2}\) (4)
Từ (3) và (4) => IJ // AB & \(IJ=\frac{CD-AB}{2}\)
=> đpcm
A = x2 + 4x + 7
= ( x2 + 4x + 4 ) + 3
= ( x + 2 )2 + 3
( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 3 ≥ 3
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MinA = 3 <=> x = -2
B = 2x2 - 6x
= 2( x2 - 3x + 9/4 ) - 9/2
= 2( x - 3/2 )2 - 9/2
2( x - 3/2 )2 ≥ 0 ∀ x => 2( x - 3/2 )2 -9/2 ≥ -9/2
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MinB = -9/2 <=> x = 3/2
C = -2x2 + 8x - 15
= -2( x2 - 4x + 4 ) - 7
= -2( x - 2 )2 - 7
-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxC = -7 <=> x = 2
\(G=5x^2+5y^2+8xy+2y-2x+2020\)
\(=\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)+2018\)
\(=\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2+2018\ge2018\)
Đẳng thức xảy ra tại x=1;y=-1
Vậy..............