Cho các số thực dương a,b,c thỏa mãn: \(a+b+c=1\)
Chứng minh rằng: \(\left(\frac{4a}{b+c}+1\right)\left(\frac{4b}{c+a}+1\right)\left(\frac{4c}{a+b}+1\right)>25\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O D E F H I
a) AD là tiếp tuyến của (O) => AD vuông góc AO; \(\Delta\)ABC cân tại A có tâm ngoại tiếp O => AO vuông góc BC
Vậy AD || BC (đpcm).
b) Dễ thấy ^AEF = ^BEA; ^EAF = ^EBA => \(\Delta\)EAF ~ \(\Delta\)EBA => EA2 = EF.EB (đpcm).
c) Ta có ^FDE = ^FCB (vì DA || BC) = ^DBE (vì BD là tiếp tuyến của (O)) => \(\Delta\)DEF ~ \(\Delta\)BED
=> ED2 = EF.EB = EA2 => E là trung điểm của AD, do đó IE là đường trung bình \(\Delta\)OAD
=> IE vuông góc AD => A,E,I,H cùng thuộc đường tròn đường kính AI (1)
Lại có E là trung điểm cạnh AD của tam giác AHD vuông tại H
=> EH2 = EA2 = EF.EB => \(\Delta\)EFH ~ \(\Delta\)EHB => ^EHF = ^EBH = ^EAF => A,H,E,F cùng thuộc 1 đường tròn (2)
Từ (1);(2) => F nằm trên đường tròn đường kính AI => AI vuông góc IF (đpcm).
61. Mary wishes she was able to speak English well.
62. This stadium started to be used 3 years ago.
63. If we had had a map, we wouldn’t have hot lost.
64. Peter asked if he could borrow Janet's typewriter.
65. It has been 5 years since we vissited Ha Long Bay.
Chào em, em tham khảo nhé!
32. A
33. C
34. D
35. B
Chúc em học tốt và có những trải nghiệm tuyệt vời tại olm.vn!
41. C => because
42. D => in
43. C => working
44. D => well
45. C => will enter
41.C so => because
42. C. was => were
43. ??
44. C.she => her
45. C. eater => will eat
~ Hok T ~~
không mất tính tổng quát giả sử $a\leqslant b\leqslant c$
đặt
x=a+b+c
y=ab+bc+ac
z=abc
ta có bđt thức đầu tiên sẽ tương đương với
$(x+3a)(x+3b)(x+3c)> 25(x-a)(x-b)(x-c)$
$\Leftrightarrow x^{3}+3x^{2}(a+b+c)+9x(ab+bc+ac)+27abc> 25(x^{3}-x^{2}(a+b+c)+x(ab+bc+ac)-abc)$
$\Leftrightarrow x^{3}-4xy+13z> 0$ (1)
đặt S=VT
ta có
S=$(a+b+c)^{3}-4(a+b+c)(ab+bc+ac)+13abc=(a+b+c)((a+b+c)^{2}-4(ab+bc+ac))+13abc=(a+b+c)((a+b-c)^{2}-4ab)+13abc= (a+b+c)(a+b-c)^{2}+ab(9c-4b-4c)$
vậy (1) tương đương với
$(a+b+c)(a+b-c)^{2}+ab(9c-4b-4c)> 0$
do $0< a\leqslant b\leqslant c$
nên bđt trên hiển nhiên đúng
vậy được đpcm