Thầy/cô giúp em chứng minh công thức chia 2 lũy thừa cùng cơ số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2-\left(-x+4\right)=\left(-2\right)\left(-3\right)+4\)
\(2-\left(-x+4\right)=10\)
\(-x+4=2-10\)
\(-x+4=-8\)
\(-x=-8-4\)
\(-x=-12\)
\(=>x=12\)
Xem lại đề bài nha bạn , Chỗ kia phải là 78 sao lại là 98 ạ .
b) (2x + 1) chia hết cho (x - 1)
(2x + 1) - 2(x + 1) chia hết cho (x - 1)
0 chia hết cho (x - 1)
Suy ra x ≠ 1
c) (x + 16) chia hết cho x
(x + 16) - x chia hết cho x
16 chia hết cho x
Suy ra \(x\inƯ\left(16\right)\) hay \(x\in\left\{1;2;4;8;16;-1;-2;-4;-8;-16\right\}\)
d) (x + 15) chia hết cho (x + 3)
(x + 15) - (x + 3) chia hết cho (x + 3)
12 chia hết cho (x + 3)
Suy ra \(\left(x+3\right)\inƯ\left(12\right)\) hay \(\left(x+3\right)\in\left\{1;2;3;4;6;12;-1;-2;-3;-4;-6;-12\right\}\)
Vậy \(x\in\left\{-2;-1;0;1;3;9;-4;-5;-6;-7;-9;-15\right\}\)
Gọi d là ƯCLN(2p + 1; 4p + 1)
⇒ 2p + 1 ⋮ d và 4p + 1 ⋮ d
⇒ 2 x (2p + 1) ⋮ d và 4p + 1 ⋮ d
⇒ 4p + 2 ⋮ d và 4p + 1 ⋮ d
⇒ (4p + 2) - (4p + 1) ⋮ d
⇒ 4p + 2 - 4p - 1 ⋮ d
⇒ 2 - 1 ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy 2p + 1 và 4p + 1 là 2 số nguyên tố cùng nhau
Dùng phương pháp đánh giá em nhá.
+ Nếu p = 2 ta có: 2p + 1 = 5 (thỏa mãn); 4p + 1 = 9 (loại)
+ Nếu p = 3 ta có: 2p + 1 = 7 (thỏa mãn); 4p + 1 = 13 (thỏa mãn)
+ Nếu p > 3 mà p là số nguyên tố nên p có dạng:
p = 3k + 1; p = 3k + 2 (k \(\in\)N*)
Với p = 3k + 1 ⇒ 2p + 1 = 2.(3k+1) + 1 = 6k+3 ⋮ 3 (loại)
Với p = 3k + 2 ⇒ 4p + 1 = 4.(3k + 2) + 1 = 12k + 9 ⋮ 3(loại)
Từ những phân tích trên ta có: p = 3
Kết luận với p = 3 thì p; 2p + 1; 4p + 1 đồng thời là số nguyên tố.
Dùng phương pháp đánh giá em nhá.
Nếu p = 2 ⇒ 2p - 1 = 4 - 1 = 3 (thỏa mãn)
p = 2 ⇒ 4p - 1 = 8 - 1 = 7 (thỏa mãn)
Nếu p = 3 ⇒ 2p - 1 = 6- 1 = 5 (thỏa mãn)
p = 3 ⇒ 4p - 1 = 12 - 1 = 11 (thỏa mãn)
Nếu p > 3 ⇒ p = 3k + 1 (k \(\) \(\in\) N*)
p = 3k + 1 ⇒ 4p - 1 = 4.(3k + 1) - 1 = 12k - 3 ⋮ 3(loại)
Nếu p = 3k + 2 ⇒ 2p - 1 = 2.(3k + 2) - 1 = 6k - 3 ⋮ 3(loại)
Từ những phân tích trên ta có p = 2; 3
Kết luận: p \(\in\) {2; 3}
\(a^m:a^n\left(m\le n\right)\)
= (a.a.a.a.a..):(a.a.a...)
m thừa số và n thừa số lần lượt ở mỗi phép chia.
=(a.a.a...):(a.a.a...).(a.a..)
n thừa số ở 2 bên phép chia và (m-n) thừa số ở sau phép nhân.
=1*(a.a...)=a.a... (m-n thừa số)
Vậy \(a^m:a^n=a^{m-n}\)