giải phương trình \(\left(x-3\right)\sqrt{1+x}-x\sqrt{4-x}=2x^2-6x-3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt AM-GM dạng \(a+b\ge2\sqrt{ab}\)ta có
\(P^2=x+y+2+2\sqrt{\left(x+1\right)\left(y+1\right)}\)
\(\le x+y+2+\left(x+1\right)+\left(y+1\right)=202\)
\(\Rightarrow P\le\sqrt{202}\)
Dấu "=" xảy ra khi \(x=y=\frac{99}{2}\)
Áp dụng bất đẳng thức bu - nhi - a - cốp - ski cho 2 cặp số ( \(\sqrt{x+1},\sqrt{y+1}\)) và ( 1 , 1 )
\(\sqrt{x+1}+\sqrt{y+1}\le\left(x+1+y+1\right).\left(1+1\right)\)= 2.101 = 202
Dấu bằng xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{\sqrt{x+1}}{1}=\frac{\sqrt{y+1}}{1}\\x+y=99\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}=\sqrt{y+1}\\x+y=99\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{99}{2}\\y=\frac{99}{2}\end{cases}}\)
\(P=\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\left(a+b+c\right)^3}{abc}\)
\(\ge\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{9\left(a+b+c\right)^2}{ab+bc+ca}\)
\(=\left[\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\right]+\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+18\)
\(\ge2+8+18=28\)
Đẳng thức xảy ra khi \(a=b=c\)
A B C H P Q
Xét tứ giác APHQ có :
Góc A + Góc APH + Góc PHQ + Góc AQH = 360o
\(\Rightarrow\)Góc A + 90o + Góc PHQ + 90o = 360o
\(\Rightarrow\)Góc A + Góc PHQ = 180o
\(\Rightarrow\)Góc A + Góc BHC = 180o (Do góc PHQ = góc BHC (Đối đỉnh))
\(\Rightarrow\)ĐPCM
\(ĐKXĐ:x\ge-1\)
\(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
\(\Leftrightarrow2x^2+4=5\sqrt{x^3+1}\)
\(\Leftrightarrow4x^4+16x^2+16=25x^3+25\)
\(\Leftrightarrow25x^3+9-4x^4-16x^2=0\)
\(\Leftrightarrow-4x^4+5x^3-3x^2+20x^3-25x^2+15x+12x^2-15x+9=0\)
\(\Leftrightarrow-x^2\left(4x^2-5x+3\right)+5x\left(4x^2-5x+3\right)+3\left(4x^2-5x+3\right)=0\)
\(\Leftrightarrow-\left(4x^2-5x+3\right)\left(x^2-5x-3=0\right)\)
\(\Leftrightarrow\orbr{\begin{cases}4x^2-5x+3=0\left(ktm\right)\\x^2-5x-3=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5-\sqrt{37}}{2}\\x=\frac{5+\sqrt{37}}{2}\end{cases}}\)
Vậy tập nghiệm của phương trình là :\(S=\left\{\frac{5-\sqrt{37}}{2};\frac{5+\sqrt{37}}{2}\right\}\)
Gọi thời gian chảy của vòi thứ nhất để bể đầy là a giờ (a > 0)
\(\Rightarrow\)Thời gian chảy của vòi thứ 2 để bể đầy là a + 2 giờ
Đổi : 2 giờ 24 phút : = \(\frac{12}{5}\) giờ
\(\Rightarrow\)Nếu cả 2 vòi cùng chảy thì sau một giờ nước trong bể sẽ bằng : \(\frac{1}{\frac{12}{5}}=\frac{5}{12}\)(bể)
Ta có phương trình :
\(\frac{1}{a}+\frac{1}{a+2}=\frac{5}{12}\)
\(\Leftrightarrow\frac{12\left(a+2\right)+12a}{12a\left(a+2\right)}=\frac{5a\left(a+2\right)}{12a\left(a+2\right)}\)
\(\Leftrightarrow12a+24+12a=5a^2+10a\)
\(\Leftrightarrow-5a^2+14a+24=0\)
\(\Leftrightarrow-5a^2-6a+20a+24=0\)
\(\Leftrightarrow-a\left(5a+6\right)+4\left(5a+6\right)=0\)
\(\Leftrightarrow\left(5a+6\right)\left(4-a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5a+6=0\\4-a=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{6}{5}\left(ktm\right)\\a=4\left(tm\right)\end{cases}}\)
Vậy thời gian vòi thứ nhất chảy 1 mình để đầy bể là 4 giờ
thời gian vòi thứ 2 chảy 1 mình để đầy bể là 4 + 2 = 6 giờ.
Ta có: \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}=a\left(1-\frac{b^2}{1+b^2}\right)\)
Áp dụng bđt cô - si, ta có: \(1+b^2\ge2b\)
\(\Rightarrow a\left(1-\frac{b^2}{1+b^2}\right)\ge a\left(1-\frac{b^2}{2b}\right)=a-\frac{ab}{2}\)
Tương tự ta có: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\); \(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Cộng ba vế của các bđt trên, ta được:
\(\text{ Σ}_{cyc}\frac{a}{1+b^2}\ge\left(a+b+c\right)-\frac{ab+bc+ca}{2}\)
\(\ge\left(a+b+c\right)-\frac{\left(a+b+c\right)^2}{6}\ge\frac{3}{2}\)
(Dấu "=" khi a = b = c = 1)
\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)\(\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)\(\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\Leftrightarrow2x+1=2x^3+x^2+2x+1\)\(\Leftrightarrow2x^3+x^2=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)
\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\left(1\right)\)
\(\left(1\right)\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)
\(x^2+1\ge1\forall x\Rightarrow2x+1\ge0!2x+1!=2x+1\)
\(\left(1\right)\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)
\(\left(1\right)\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)
\(\left(1\right)\Leftrightarrow2x+1=\left(2x+1\right)\left(x^2+1\right)\Leftrightarrow\left(2x+1\right).\left(1-\left(x^2+1\right)\right)=0\)
\(\hept{\begin{cases}2x+1=0\\-x^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\x=0\end{cases}}}\)
Chúc bạn học tốt !!!