K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2020

Tìm max:

Áp đụng bất đẳng thức AM-GM ta có:

\(\left(x+y\right)+z\le\frac{\left(x+y\right)^2+1}{2}+\frac{z^2+1}{2}=\frac{x^2+y^2+z^2+2xy+2}{2}=2+xy\)

Chứng minh tương tự ta có: \(2+xz\ge x+y+z;2+yz\ge x+y+z\)

Từ trên ta lại có: \(P=\frac{x}{2+yz}+\frac{y}{2+zx}+\frac{z}{2+xy}\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=1\\z=0\end{cases}}\)

\(\Rightarrow Max_P=1\)

Tìm Min

Áp BĐT Cauchy - Schwaz ta có:

\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)+3xyz}\left(1\right)\)

Đặt \(t=x+y+z\left(\sqrt{2}\le t\le\sqrt{6}\right)\)

Mặt khác ta có: \(9xyz\le\left(x+y+z\right)\left(xy+yz+xz\right)=\frac{t\left(t^2-2\right)}{2}\) 

Kết hợp với \(\left(1\right)\Rightarrow P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)+3xyz}\ge\frac{6t}{t^2+10}\) Luôn đúng với \(\sqrt{2}\le t\le\sqrt{6}\)

Dấu đẳng thức xảy ra chẳng hạn khi \(\hept{\begin{cases}x=\sqrt{2}\\y=z=0\end{cases}}\)

\(\Rightarrow Min_P=\frac{\sqrt{2}}{2}\)

Vậy ...........

7 tháng 2 2020

Bạn Băng Băng ơi, BD9T AM - GM là bất đẳng thức Cô - si đúng không bạn ?

2 tháng 2 2020

Với n chẵn thì : 

\(\left(n^4+4^n\right)⋮2\)mà \(\left(n^4+4^n\right)>2\)nên là hợp số 

Với n lẻ thì :
\(4^n=-1\left(mod5\right)\)

\(n^4=1\left(mod5\right)\)

\(\Rightarrow\left(n^4+4^n\right)=0\left(mod5\right)\)

Mà \(\left(n^4+4^n\right)>5\)nên \(\left(n^4+4^n\right)\)là hợp số

Vậy với mọi n tự nhiên và \(n>1\)thì A là hớp số 

Chúc bạn học tốt !!!

2 tháng 2 2020

n^4 là số chẵn 4^n là số chẵn cộng lại thì = số chẵn mà số chẵn chia hết cho 2 cho nên A là hợp số (Đpcm)

2 tháng 2 2020

\(\hept{\begin{cases}x+4y=6\sqrt{2}\\x+y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3y=-3+6\sqrt{2}\\x+y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-1+2\sqrt{2}\\x+\left(-1+2\sqrt{2}\right)=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-1+2\sqrt{2}\\x=4-2\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=4-2\sqrt{2}\\y=-1+2\sqrt{2}\end{cases}}\)

Vậy HPT có nghiệm.....

\(\hept{\begin{cases}2x+y=5\\4x+6y=10\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4x+2y=10\\4x+6y=10\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4y=0\\2x+y=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=0\\2x=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=0\\x=\frac{5}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=0\end{cases}}\)

Vậy HPT có nghiệm.....

2 tháng 2 2020

\(\hept{\begin{cases}x+2y=\sqrt{3}\\3x+4y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+4y=2\sqrt{3}\\3x+4y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1-2\sqrt{3}\\3.\left(1-2\sqrt{3}\right)+4y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1-2\sqrt{3}\\y=\frac{-1+3\sqrt{3}}{2}\end{cases}}\)

Vậy HPT có nghiệm.....

\(\hept{\begin{cases}4x-9y=9\\22x+6y=31\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}44x-99y=99\\44x+12y=62\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}111y=-37\\4x-9y=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{-1}{3}\\4x-9.\left(\frac{-1}{3}\right)=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{-1}{3}\\x=\frac{3}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{-1}{3}\end{cases}}\)

Vậy HPT có nghiệm.....

\(C=x^2\left(x^2+x+1\right)-2x\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-2x+3\right)\)

2 tháng 2 2020

Gọi thời gian chảy một mình để đầy bể của vòi 1 là: x ( x > 0 ) ( giờ )

                                                               vòi 2 là: y ( y > 0 ) ( giờ )

Trong 1 giờ vòi 1 chảy được là: \(\frac{1}{x}\)bể

                      2                 là: \(\frac{1}{y}\)bể

\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{y}=\frac{6}{35}\)( 1 )

Trong 5 giờ vòi 1 chảy được là: \(\frac{5}{x}\)bể

        7 giờ vòi 2                  là: \(\frac{7}{y}\)bể

\(\Rightarrow\)\(\frac{5}{x}+\frac{7}{y}=1\)( 2 )

Từ ( 1 ) và ( 2 ) ta có phương trình

\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{6}{35}\\\frac{5}{x}+\frac{7}{y}=1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=14\end{cases}}\)

Vậy...

2 tháng 2 2020

Gọi chiều dài của khu vườn lúc đầu là: x ( x > 0, y ) ( m )

              rộng                               là: y ( y > 0 ) ( m )

Chu vi khu vườn lúc đầu là: 2( x + y ) = 72 =) x + y = 36 m   ( 1 )

Chiều rông khi gấp đôi là: 2y  ( m )

Chiều dài khi gấp 3 là: 3x    ( m )

Chu vi khu vườn là: 2( 3x + 2y ) = 194 =) 3x + 2y = 97 ( 2 )

Từ ( 1 ) và ( 2 ) ta có hệ phương trình

\(\hept{\begin{cases}x+y=36\\3x+2y=97\end{cases}\Leftrightarrow\hept{\begin{cases}x=25\\y=11\end{cases}}}\)

Vậy...

2 tháng 2 2020

Gọi thời gian vòi 1 chảy một mình đầy bể là x ( giờ ) (x>0),thời gian vòi 2 chảy một mình đầy bể là y ( giờ ) (y>0)

Trong 1 giờ vòi 1 chảy được 1/x ( bể)

Trong 1 giờ vời 2 chảy được 1/y (bể)

Trong 1 giờ cả hai vòi chảy được 1/12 ( bể )

=> ta có phương trình 1/x + 1/y = 1/12                            (1)

Trong 4 giờ vòi 1 chảy được 4/x (bể ), trong 3 giờ vòi 2 chảy được 3/y (bể) được 3/10 bể nên ta có 

4/x + 3/y = 3/10                     (2)

Từ (1) và (2) ta có hệ phương trình 

1/x +1/y =1/12

4/x+3/y = 3/10

(từ đây bạn tự giải tiếp nhé,chỉ cần giải xong hệ phương trinh ra x,y là ra kết quả rồi)