K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

Ta có: \(\left(a-b\right)\left(b-c\right)\left(a-c\right)+\left(a+b\right)\left(b+c\right)\left(a-c\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a-c\right).\left[\left(a-b\right)\left(b-c\right)+\left(a+b\right)\left(b+c\right)\right]+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a-c\right).\left(ab-ac-b^2+bc+ab+ac+b^2+bc\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a-c\right).\left(2ab+2bc\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=2b.\left(a-c\right).\left(a+c\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a+c\right)\left[2b\left(a-c\right)+\left(a+b\right)\left(c-b\right)\right]\)

    \(=\left(a+c\right)\left(2ab-2bc+ac-ab+bc-b^2\right)\)

    \(=\left(a+c\right)\left(ab-bc+ac-b^2\right)\)

    \(=\left(a+c\right)\left[a.\left(b+c\right)-b.\left(b+c\right)\right]\)

    \(=\left(a+c\right)\left(a-b\right)\left(b+c\right)\)

28 tháng 8 2020

Ta có: \(\left(a-b\right)\left(b-c\right)\left(a-c\right)+\left(a+b\right)\left(b+c\right)\left(a-c\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a-c\right).\left[\left(a-b\right)\left(b-c\right)+\left(a+b\right)\left(b+c\right)\right]+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a-c\right).\left(ab-ac-b^2+bc+ab+ac+b^2+bc\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a-c\right).\left(2ab+2bc\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=2b.\left(a-c\right).\left(a+c\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a+c\right)\left[2b\left(a-c\right)+\left(a+b\right)\left(c-b\right)\right]\)

    \(=\left(a+c\right)\left(2ab-2bc+ac-ab+bc-b^2\right)\)

    \(=\left(a+c\right)\left(ab-bc+ac-b^2\right)\)

    \(=\left(a+c\right)\left[a.\left(b+c\right)-b.\left(b+c\right)\right]\)

    \(=\left(a+c\right)\left(a-b\right)\left(b+c\right)\)

28 tháng 8 2020

A = a( b + 2 ) + b( 2 + b )

= a( b + 2 ) + b( b + 2 )

= ( a + b )( b + 2 )

Với a = 2 ; b = 3

A = ( 2 + 3 )( 3 + 2 ) = 5.5 = 25

B = b2 + b + c( b + 1 )

= b( b + 1 ) + c( b + 1 )

= ( b + c )( b + 1 )

Với b = 1 ; c = 2

B = ( 1 + 2 )( 1 + 1 ) = 6

C = xy( x - y ) - 2x + 2y

= xy( x - y ) - 2( x - y )

= ( x - y )( xy - 2 )

Với xy = 8 ; x - y = 5

C = 5.( 8 - 2 ) = 30

D = x( x + y ) - xy( x + y )

= ( x + y )( x - xy )

= ( x + y )x( 1 - y )

Với x = 1 ; y = -5

D = ( 1 - 5 ).1.[ 1 - ( -5 ) ] = -24

28 tháng 8 2020

Bài làm:

a) Ta có: \(x\left(x-3\right)-2x+6=0\)

\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

b) \(\frac{x}{3}+\frac{x^2}{2}=0\)

\(\Leftrightarrow\frac{3x^2+2x}{6}=0\)

\(\Leftrightarrow x\left(3x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{2}\end{cases}}\)

c) \(x-2=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-4x+4+2-x=0\)

\(\Leftrightarrow x^2-5x+6=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

d) \(\left(x^2+3\right)\left(x+1\right)+x=-1\)

\(\Leftrightarrow\left(x^2+3\right)\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x^2+4\right)\left(x+1\right)=0\)

Vì \(x^2+4>\left(\forall x\right)\) => \(x=-1\)

28 tháng 8 2020

a. \(x\left(x-3\right)-2x+6=0\)

\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

b. \(\frac{x}{3}+\frac{x^2}{2}=0\)

\(\Leftrightarrow\frac{2x+3x^2}{6}=0\)

\(\Leftrightarrow x\left(2+3x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2+3x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{2}{3}\end{cases}}\)

c. \(x-2=\left(x-2\right)^2\)

\(\Leftrightarrow x-2-x^2+4x-4=0\)

\(\Leftrightarrow-\left(x-3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

d. \(\left(x^2+3\right)\left(x+1\right)+x=-1\)

\(\Leftrightarrow x^3+x^2+3x+3+x+1=0\)

\(\Leftrightarrow x^3+x^2+4x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x^2=-4\left(vo-ly\right)\end{cases}}\)

<=> x = - 1

28 tháng 8 2020

a) x( x + 2018 ) - 2x - 4036 = 0 

<=> x( x + 2018 ) - 2( x + 2018 ) = 0

<=> ( x + 2018 )( x - 2 ) = 0

<=> \(\orbr{\begin{cases}x+2018=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2018\\x=2\end{cases}}\)

b) x + 5 = 2( x + 5 )2

<=> x + 5 = 2( x2 + 10x + 25 )

<=> x + 5 = 2x2 + 20x + 50

<=> 2x2 + 20x + 50 - x - 5 = 0

<=> 2x2 + 19x + 45 = 0

<=> 2x2 + 10x + 9x + 45 = 0

<=> 2x( x + 5 ) + 9( x + 5 ) = 0

<=> ( x + 5 )( 2x + 9 ) = 0

<=> \(\orbr{\begin{cases}x+5=0\\2x+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-\frac{9}{2}\end{cases}}\)

c) ( x2 + 1 )( 2x - 1 ) + 2x = 1

<=> 2x3 - x2 + 4x - 1 - 1 = 0

<=> 2x3 - x2 + 4x - 2 = 0

<=> x2( 2x - 1 ) + 2( 2x - 1 ) = 0

<=> ( 2x - 1 )( x2 + 2 ) = 0

<=> \(\orbr{\begin{cases}2x-1=0\\x^2+2=0\end{cases}\Leftrightarrow}x=\frac{1}{2}\)( vì x2 + 2 ≥ 2 > 0 ∀ x )

d) \(\frac{x}{3}-\frac{x^2}{4}=0\)

\(\Leftrightarrow\frac{4x}{12}-\frac{3x^2}{12}=0\)

\(\Leftrightarrow\frac{4x-3x^2}{12}=0\)

\(\Leftrightarrow4x-3x^2=0\)

\(\Leftrightarrow x\left(4-3x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\4-3x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{4}{3}\end{cases}}\)

29 tháng 8 2020

Bài này đề sửa thành: \(H=a+4b+1\) mk ms lm được ạ

Ta có: \(a=111...1\) (2020 chữ số 1)

\(a=111...1\cdot100...0+111...1\)

\(a=b.\left(9b+1\right)+b\)

Thay vào:

\(H=a+4b+1=b\left(9b+1\right)+b+4b+1=9b^2+6b+1=\left(3b+1\right)^2\)

=> đpcm

28 tháng 8 2020

\(8x\left(x-2017\right)-2x+4034=0\)\(\Leftrightarrow8x\left(x-2017\right)-2\left(x-2017\right)=0\)

    \(\Leftrightarrow2\left(x-2017\right)\cdot\left(4x-1\right)=0\)\(\Leftrightarrow\hept{\begin{cases}x-2017=0\\4x-1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2017\\x=\frac{1}{4}\end{cases}}\)

          Vậy \(x=2017\)hoặc \(x=\frac{1}{4}\)

28 tháng 8 2020

8x( x - 2017 ) - 2x + 4034 = 0

<=> 8x( x - 2017 ) - 2( x - 2017 ) = 0

<=> ( 8x - 2 )( x - 2017 ) = 0

<=> \(\orbr{\begin{cases}8x-2=0\\x-2017=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=2017\end{cases}}\)

28 tháng 8 2020

3x4 - 8x3 + 16 

Thử với x = 2 ta được :

3.24 - 8.23 + 16 = 0

Vậy x = 2 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì đa thức trên chia hết cho x - 2

Thực hiện phép chia 3x4 - 8x3 + 16 cho x - 2 ta được 3x3 - 2x2 - 4x - 8

=> 3x4 - 8x3 + 16 = ( x - 2 )( 3x3 - 2x2 - 4x - 8 )

Ta có : 3x3 - 2x2 - 4x - 8 

= 3x3 + 4x2 + 4x - 6x2 - 8x - 8

= x( 3x2 + 4x + 4 ) - 2( 3x2 + 4x + 4 )

= ( x - 2 )( 3x2 + 4x + 4 )

Tổng kết : 3x4 - 8x3 + 16 = ( x - 2 )( x - 2 )( 3x2 + 4x + 4 ) = ( x - 2 )2( 3x2 + 4x + 4 )

28 tháng 8 2020

Ta có: \(3x^4-8x^3+16=\left(3x^4-12x^3+12x^2\right)+\left(4x^3-16x^2+16x\right)+\left(4x^2-16x+16\right)\)

                                            \(=3x^2.\left(x^2-4x+4\right)+4x.\left(x^2-4x+4\right)+4.\left(x^2-4x+4\right)\)

                                            \(=\left(3x^3+4x+4\right)\left(x-2\right)^2\)