K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7

1. Look! The car is moving so fast.

2. Listen! Someone is whispering in the next room.

3. Is your friend sitting next to the beautiful girl over there at present?

4. Now Joy is trying to pass the examination.

5. It’s 11 o’clock, and my mom is cooking lunch in the kitchen.

6. Keep silent! You are singing so loudly.

7. I am not staying at home at present.

8. Now Hana is lying to her mother about her bad marks.

9. At present they are traveling to LA.

10. Jim is not working in his office now.

\(#FallenAngel\)

1 tháng 7

bạn đang hỏi gì?

6h40p=20/3 giờ

Gọi thời gian làm riêng hoàn thành công việc của người thứ nhất và người thứ hai lần lượt là a(giờ) và b(giờ)

(Điều kiện: a>0; b>0)

Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{a}\)(công việc)

Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{b}\)(công việc)

Trong 1 giờ, hai người làm được: \(1:\dfrac{20}{3}=\dfrac{3}{20}\)(công việc)

Do đó, ta có: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{20}\left(1\right)\)

Trong 5 giờ, người thứ nhất làm được: \(\dfrac{5}{a}\)(công việc)

Trong 8 giờ, người thứ hai làm được: \(\dfrac{8}{b}\)(công việc)

Nếu người thứ nhất làm trong 5 giờ, sau đó nghỉ và người thứ hai làm trong 8 giờ thì xong nên ta có: \(\dfrac{5}{a}+\dfrac{8}{b}=1\left(2\right)\)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{20}\\\dfrac{5}{a}+\dfrac{8}{b}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{a}+\dfrac{5}{b}=\dfrac{3}{4}\\\dfrac{5}{a}+\dfrac{8}{b}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{5}{a}+\dfrac{8}{b}-\dfrac{5}{a}-\dfrac{5}{b}=1-\dfrac{3}{4}\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{20}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{b}=\dfrac{1}{4}\\\dfrac{1}{a}=\dfrac{3}{20}-\dfrac{1}{b}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=12\\\dfrac{1}{a}=\dfrac{3}{20}-\dfrac{1}{12}=\dfrac{9}{60}-\dfrac{5}{60}=\dfrac{4}{60}=\dfrac{1}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=12\\a=15\end{matrix}\right.\left(nhận\right)\)

Vậy: thời gian làm riêng hoàn thành công việc của người thứ nhất và người thứ hai lần lượt là 15(giờ) và 12(giờ)

1 tháng 7

Gọi thời gian nếu làm riêng của người thứ nhất, người thứ hai để hoàn thành công việc lần lượt là $a,b$ (giờ; $a,b>0$)

Mỗi giờ người thứ nhất làm được: $\frac1a$ (công việc)

Mỗi giờ người thứ hai làm được: $\frac1b$ (công việc)

Vì hai người cùng làm việc thì trong 6 giờ 40 phút (= $\frac{20}{3}$ giờ) thì xong công việc nên ta có phương trình: $\frac{20}{3}(\frac 1a+\frac1b)=1$

$\Leftrightarrow \frac1a+\frac1b=\frac{3}{20}$ (1)

Vì nếu người thứ nhất làm riêng trong 5 giờ rồi người thứ hai tiếp tục làm nốt trong 8 giờ thì xong công việc nên ta có phương trình: 

$\frac5a+\frac8b=1$ (2)

Từ (1) và (2) ta có hệ: $\begin{cases} \frac1a+\frac1b=\frac{3}{20} \\ \frac5a+\frac8b=1 \end{cases}$

Đặt $\frac 1a=u:\frac1b=v;(u,v>0)$

Khi đó hot trở thành: $\begin{cases} u+v=\frac{3}{20}\\ 5u+8v=1\end{cases} \Leftrightarrow \begin{cases} u=\frac{1}{15}\\v=\frac{1}{12}\end{cases}$

$\Rightarrow \begin{cases} \frac1a=\frac{1}{15}\\\frac1b=\frac{1}{12} \end{cases} \Rightarrow \begin{cases} a=15 (tm)\\b=12(tm) \end{cases}$

Vậy: ...

#$\mathtt{Toru}$

Gọi đường thẳng (d): y=ax+b(a\(\ne\)0) là đường thẳng đi qua hai điểm (2;0); (-1;-2)

Thay x=2 và y=0 vào (d), ta được:

\(a\cdot2+b=0\)(1)

Thay x=-1 và y=-2 vào (d), ta được:

\(a\cdot\left(-1\right)+b=-2\left(2\right)\)

Từ (1),(2) ta có hệ phương trình: \(\left\{{}\begin{matrix}2a+b=0\\-a+b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+b+a-b=0-\left(-2\right)\\b=-2a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3a=2\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{2}{3}\\b=-2\cdot\dfrac{2}{3}=-\dfrac{4}{3}\end{matrix}\right.\)

Vậy: (d): \(y=\dfrac{2}{3}x-\dfrac{4}{3}\)

=>\(\dfrac{2}{3}x-y=\dfrac{4}{3}\)

 

ĐKXĐ: \(x\notin\left\{1;-1;2;-2\right\}\)

\(\dfrac{x+4}{x-1}+\dfrac{x-4}{x+1}=\dfrac{x+8}{x-2}+\dfrac{x-8}{x+2}+6\)

=>\(\dfrac{\left(x+4\right)\left(x+1\right)+\left(x-4\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+8\right)\left(x+2\right)+\left(x-8\right)\left(x+2\right)+6\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

=>\(\dfrac{2x^2+8}{x^2-1}=\dfrac{x^2+10x+16+x^2-10x+16+6\left(x^2-4\right)}{x^2-4}\)

=>\(\dfrac{2x^2+8}{x^2-1}=\dfrac{2x^2+32+6x^2-24}{x^2-4}\)

=>\(\dfrac{2x^2+8}{x^2-1}=\dfrac{8x^2+8}{x^2-4}\)

=>\(\dfrac{x^2+4}{x^2-1}=\dfrac{4\left(x^2+1\right)}{x^2-4}\)

=>\(4\left(x^2+1\right)\left(x^2-1\right)=\left(x^2+4\right)\left(x^2-4\right)\)

=>\(4\left(x^4-1\right)=x^4-16\)

=>\(4x^4-4-x^4+16=0\)

=>\(3x^4+12=0\)(vô lý)

Vậy: Phương trình vô nghiệm

29 tháng 6

\(n_{Cu}=\dfrac{32}{64}=0,5\left(mol\right)\)

\(n_{AgNO_3}=2.0,16=0,32\left(mol\right)\)

PTHH:

\(Cu+2AgNO_3\rightarrow Cu\left(NO_3\right)_2+2Ag\)

0,125       0,25           0,125           0,25

Số mol Cu phản ứng :

\(n_{Cu\left(pư\right)}=\dfrac{51-32}{2.108-64}=0,125\left(mol\right)\)

a,\(C_{M\left(Cu\left(NO_3\right)_2\right)}=\dfrac{0,125}{2}=\dfrac{1}{16}\left(M\right)\)

\(C_{M\left(AgNO_3dư\right)}=\dfrac{0,32-0,25}{2}=\dfrac{7}{200}\left(M\right)\)

Câu b để mình suy nghĩ sau:)

Bài 1:

e: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{16}{x^2-1}\)

=>\(\dfrac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{16}{\left(x-1\right)\left(x+1\right)}\)

=>\(\left(x+1\right)^2-\left(x-1\right)^2=16\)

=>\(\left(x+1+x-1\right)\left(x+1-x+1\right)=16\)

=>4x=16

=>x=4(nhận)

f: ĐKXĐ: \(x\notin\left\{1-1\right\}\)

\(\left(1-\dfrac{x-1}{x+1}\right)\left(x+2\right)=\dfrac{x+1}{x-1}+\dfrac{x-1}{x+1}\)

=>\(\dfrac{x+1-x+1}{\left(x+1\right)}\left(x+2\right)=\dfrac{\left(x+1\right)^2+\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\)

=>\(\dfrac{2\left(x+2\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{2x^2+2}{\left(x-1\right)\left(x+1\right)}\)

=>\(2\left(x+2\right)\left(x-1\right)=2\left(x^2+1\right)\)

=>\(\left(x+2\right)\left(x-1\right)=x^2+1\)

=>\(x^2+x-2=x^2+1\)

=>x-2=1

=>x=3(nhận)

a: ĐKXĐ: \(x\notin\left\{0;-1;4\right\}\)

\(\dfrac{11}{x}=\dfrac{9}{x+1}+\dfrac{2}{x-4}\)

=>\(\dfrac{11}{x}=\dfrac{9\left(x-4\right)+2\left(x+1\right)}{\left(x+1\right)\left(x-4\right)}\)

=>\(\dfrac{11}{x}=\dfrac{11x-34}{x^2-3x-4}\)

=>\(11\left(x^2-3x-4\right)=x\left(11x-34\right)\)

=>\(11x^2-33x-44=11x^2-34x\)

=>-33x-44=-34x

=>-33x+34x=44

=>x=44(nhận)

b: ĐKXĐ: \(x\ne4\)

\(\dfrac{14}{3x-12}-\dfrac{2+x}{x-4}=\dfrac{3}{8-2x}-\dfrac{5}{6}\)

=>\(\dfrac{14}{3\left(x-4\right)}-\dfrac{x+2}{x-4}=\dfrac{-3}{2\left(x-4\right)}-\dfrac{5}{6}\)

=>\(\dfrac{28}{6\left(x-4\right)}-\dfrac{6\left(x+2\right)}{6\left(x-4\right)}=\dfrac{-9}{6\left(x-4\right)}-\dfrac{5\left(x-4\right)}{6\left(x-4\right)}\)

=>28-6(x+2)=-9-5(x-4)

=>28-6x-12=-9-5x+20

=>-6x+16=-5x+11

=>-6x+5x=11-16

=>-x=-5

=>x=5(nhận)

c: ĐKXĐ: \(x\notin\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)

\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)

=>\(\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}\)

=>\(\left(1-3x\right)^2-\left(1+3x\right)^2=12\)

=>\(9x^2-6x+1-9x^2-6x-1=12\)

=>-12x=12

=>x=-1(nhận)

d: ĐKXĐ: \(x\notin\left\{0;5;-5\right\}\)

\(\dfrac{x+5}{x^2-5x}-\dfrac{x+25}{2x^2-50}=\dfrac{x-5}{2x^2+10x}\)

=>\(\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{2x\left(x+5\right)}\)

=>\(\dfrac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}-\dfrac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{\left(x-5\right)^2}{2x\left(x+5\right)\left(x-5\right)}\)

=>\(2\left(x+5\right)^2-x\left(x+25\right)=\left(x-5\right)^2\)

=>\(2x^2+20x+50-x^2-25x=x^2-10x+25\)

=>-5x+50=-10x+25

=>5x=-25

=>x=-5(loại)

 

Bài 2:

a: ĐKXĐ: \(x\notin\left\{2;5\right\}\)

\(\dfrac{6x+1}{x^2-7x+10}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)

=>\(\dfrac{6x+1}{\left(x-2\right)\left(x-5\right)}+\dfrac{5\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}=\dfrac{3\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}\)

=>6x+1+5x-25=3x-6

=>11x-24=3x-6

=>8x=18

=>x=9/4(nhận)

b: ĐKXĐ: \(x\notin\left\{0;2;-2\right\}\)

\(\dfrac{2}{x^2-4}-\dfrac{x-1}{x\left(x-2\right)}+\dfrac{x-4}{x\left(x+2\right)}=0\)

=>\(\dfrac{2x}{x\left(x-2\right)\left(x+2\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-4\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}=0\)

=>2x-(x-1)(x+2)+(x-4)(x-2)=0

=>\(2x-\left(x^2+x-2\right)+x^2-6x+8=0\)

=>\(x^2-4x+8-x^2-x+2=0\)

=>-5x+10=0

=>x=2(loại)

c: ĐKXĐ: \(x\notin\left\{3;-1\right\}\)

\(\dfrac{1}{3-x}-\dfrac{1}{x+1}=\dfrac{x}{x-3}-\dfrac{\left(x-1\right)^2}{x^2-2x-3}\)

=>\(\dfrac{-1}{x-3}-\dfrac{1}{x+1}-\dfrac{x}{x-3}+\dfrac{\left(x-1\right)^2}{\left(x-3\right)\left(x+1\right)}=0\)

=>\(\dfrac{\left(-1-x\right)\left(x+1\right)-x+3}{\left(x-3\right)\left(x+1\right)}+\dfrac{\left(x-1\right)^2}{\left(x-3\right)\left(x+1\right)}=0\)

=>-(x+1)^2-x+3+(x-1)2=0

=>\(-x^2-2x-1-x+3+x^2-2x+1=0\)

=>-5x+3=0

=>\(x=\dfrac{3}{5}\left(nhận\right)\)

d: ĐKXĐ: \(x\notin\left\{2;-3\right\}\)

\(\dfrac{1}{x-2}-\dfrac{6}{x+3}=\dfrac{5}{6-x^2-x}\)

=>\(\dfrac{x+3-6\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{-5}{\left(x+3\right)\left(x-2\right)}\)

=>x+3-6(x-2)=-5

=>x+3-6x+12+5=0

=>-5x+20=0

=>x=4(nhận)

e: ĐKXĐ: x<>-2

\(\dfrac{2}{x+2}-\dfrac{2x^2+16}{x^3+8}=\dfrac{5}{x^2-2x+4}\)

=>\(\dfrac{2}{x+2}-\dfrac{2x^2+16}{\left(x+2\right)\left(x^2-2x+4\right)}-\dfrac{5}{x^2-2x+4}=0\)

=>\(\dfrac{2\left(x^2-2x+4\right)-2x^2-16-5x-10}{\left(x+2\right)\left(x^2-2x+4\right)}=0\)

=>\(2x^2-4x+8-2x^2-5x-26=0\)

=>-9x-18=0

=>x=-2(loại)

f: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{2\left(x+2\right)^2}{x^6-1}\)

=>\(\dfrac{\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x^2-x+1\right)}=\dfrac{2\left(x+2\right)^2}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

=>\(\dfrac{2}{\left(x^2+x+1\right)\left(x^2-x+1\right)}=\dfrac{2\left(x+2\right)^2}{\left(x^2-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

=>2(x^2-1)=2(x+2)^2

=>\(x^2-1=\left(x+2\right)^2\)

=>\(x^2+4x+4-x^2+1=0\)

=>4x+5=0

=>\(x=-\dfrac{5}{4}\left(nhận\right)\)

Bài 3:

 

c:

=>\(\dfrac{x}{x-1}+\dfrac{x}{x-2}+\dfrac{x}{x-3}=\dfrac{3x-12}{x-6}\)

=>

ĐKXĐ: \(x\notin\left\{1;2;\dfrac{3\pm\sqrt{7}}{2}\right\}\)

 \(\dfrac{4}{x^2-3x+2}-\dfrac{3}{2x^2-6x+1}+1=0\)

=>\(\dfrac{4\left(2x^2-6x+1\right)-3\left(x^2-3x+2\right)}{\left(x^2-3x+2\right)\left(2x^2-6x+1\right)}=-1\)

=>\(8x^2-24x+4-3x^2+9x-6=-\left(x^2-3x+2\right)\left[2\cdot\left(x^2-3x\right)+1\right]\)

=>\(5x^2-15x-2=-\left[2\left(x^2-3x\right)^2+5\left(x^2-3x\right)+2\right]\)

=>\(5\left(x^2-3x\right)-2+2\left(x^2-3x\right)^2+5\left(x^2-3x\right)+2=0\)

=>\(2\left(x^2-3x\right)^2+10\left(x^2-3x\right)=0\)

=>\(\left(x^2-3x\right)^2+5\left(x^2-3x\right)=0\)

=>\(\left(x^2-3x\right)\left(x^2-3x+5\right)=0\)

mà \(x^2-3x+5=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}>0\forall x\)

nên x(x-3)=0

=>\(\left[{}\begin{matrix}x=0\left(nhận\right)\\x=3\left(nhận\right)\end{matrix}\right.\)

a:

ĐKXĐ: \(x\notin\left\{8;9;10;11\right\}\)

 \(\dfrac{8}{x-8}+\dfrac{11}{x-11}=\dfrac{9}{x-9}+\dfrac{10}{x-10}\)

=>\(\left(\dfrac{8}{x-8}+1\right)+\left(\dfrac{11}{x-11}+1\right)=\left(\dfrac{9}{x-9}+1\right)+\left(\dfrac{10}{x-10}+1\right)\)

=>\(\dfrac{x}{x-8}+\dfrac{x}{x-11}-\dfrac{x}{x-9}-\dfrac{x}{x-10}=0\)

=>\(x\left(\dfrac{1}{x-8}+\dfrac{1}{x-11}-\dfrac{1}{x-9}-\dfrac{1}{x-10}\right)=0\)

=>x=0(nhận)

b:

ĐKXĐ: \(x\notin\left\{3;4;5;6\right\}\)

 \(\dfrac{x}{x-3}-\dfrac{x}{x-5}=\dfrac{x}{x-4}-\dfrac{x}{x-6}\)

=>\(\dfrac{x\left(x-5\right)-x\left(x-3\right)}{\left(x-3\right)\left(x-5\right)}=\dfrac{x\left(x-6\right)-x\left(x-4\right)}{\left(x-4\right)\left(x-6\right)}\)

=>\(\dfrac{-2x}{\left(x-3\right)\left(x-5\right)}=\dfrac{-2x}{\left(x-4\right)\left(x-6\right)}\)

=>\(x\left(\dfrac{1}{\left(x-3\right)\left(x-5\right)}-\dfrac{1}{\left(x-4\right)\left(x-6\right)}\right)=0\)

=>\(x\cdot\dfrac{\left(x-4\right)\left(x-6\right)-\left(x-3\right)\left(x-5\right)}{\left(x-3\right)\left(x-5\right)\left(x-4\right)\left(x-6\right)}=0\)

=>\(x\left(x^2-10x+24-x^2+8x-15\right)=0\)

=>x(-2x+9)=0

=>\(\left[{}\begin{matrix}x=0\left(nhận\right)\\x=\dfrac{9}{2}\left(nhận\right)\end{matrix}\right.\)

29 tháng 6

\(A=\left(\dfrac{x+1}{x^3-1}-\dfrac{1}{x-1}\right)\left(\dfrac{x+2}{x-1}-\dfrac{1}{x}\right)\left(x\ne1;0\right)\\ =\left[\dfrac{x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\left[\dfrac{x\left(x+2\right)}{x\left(x-1\right)}-\dfrac{x-1}{x\left(x-1\right)}\right]\\ =\dfrac{x+1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+2x-x+1}{x\left(x-1\right)}\\ =\dfrac{-x^2}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+x+1}{x\left(x-1\right)}\\ =\dfrac{-x}{\left(x-1\right)^2}\\ =\dfrac{-x}{x^2-2x+1}\)

ĐKXĐ: \(x\notin\left\{1;0\right\}\)

\(A=\left(\dfrac{x+1}{x^3-1}-\dfrac{1}{x-1}\right)\left(\dfrac{x+2}{x-1}-\dfrac{1}{x}\right)\)

\(=\left(\dfrac{x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{1}{x-1}\right)\cdot\left(\dfrac{x\left(x+2\right)-x+1}{x\left(x-1\right)}\right)\)

\(=\dfrac{x+1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+x+1}{x\left(x-1\right)}\)

\(=\dfrac{-x^2}{\left(x-1\right)\cdot x\left(x-1\right)}=\dfrac{-x}{\left(x-1\right)^2}\)

a: Xét (O) có

CM,CA là các tiếp tuyến

Do đó: CM=CA và OC là phân giác của góc MOA

Xét (O) có

DM,DB là các tiếp tuyến

Do đó: DM=DB và OD là phân giác của góc MOB

AC+BD

=CM+MD

=CD
b: \(\widehat{COD}=\widehat{COM}+\widehat{DOM}=\dfrac{1}{2}\cdot\widehat{MOA}+\dfrac{1}{2}\cdot\widehat{MOB}\)

\(=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot\widehat{AOB}=90^0\)

=>ΔCOD vuông tại O

c: Xét ΔCOD vuông tại O có OM là đường cao

nên \(OM^2=MC\cdot MD\)

29 tháng 6

giúp tôi ý d với bạn ơi