K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2021

Kẻ tiếp tuyến tại A. Gọi E là giao điểm của tiếp tuyến tại A với dây BC.

Ta có: EM=EA và \(\widehat{EAM}=\widehat{EMA}\)( tính chất 2 tiếp tuyến cắt nhau)

hay \(\widehat{EAB}+\widehat{BAM}=\widehat{ECA}+\widehat{CAM}\)

Mà \(\widehat{EAB}=\widehat{ECA}\)

=> \(\widehat{BAM}=\widehat{CAM}\) hay AM là phân giác góc BAC( đpcm)

15 tháng 2 2021

Tam giác ABD nội tiếp trong đường tròn (O) có AB là đường kính nên vuông tại D

Suy ra: AD ⊥ BD

Tứ giác BDCE là hình thoi nên EC // BD

Suy ra: EC ⊥ AD     (1)

Tam giác AIC nội tiếp trong đường tròn (O’) có AC là đường kính nên vuông tại I

Suy ra: AI ⊥ CE     (2)

Từ (1) và (2) suy ra AD trùng với AI

Vậy D, A, I thẳng hàng.

30 tháng 1 2021

A C B D E I O

a) Cùng bằng AD/AB=AD/AC.

b) tam giác BIE có góc AIB là góc ngoài nên góc AIB=góc IBE+góc IEB

mà góc IBE=IBD (gt) và góc IEB=góc ABD suy ra góc AIB=góc ABD+góc IBD=góc ABI

nên tam giác ABI cân tại A suy ra AI=AB=AC.

c)từ câu a) ta có BD/BE=CD/CE=DI/IE (do BI phân giác góc DBE)

suy ra CI phân giác góc DCE.

6 tháng 2 2021

ABD =1/2 sđ BD (góc tạo bởi tiếp tuyến và dây cung )

BED =1/2 sđ BD (góc nội tiếp) 

=> ABD=BED

ΔABD~ΔAEB

VÌ {BAD chung

     ABD=BED

=>AB/AE = AD/AB=>AB^2= AD.AE

20 tháng 1 2021

M A B E C m K

a/

Ta có

 \(\widehat{mAC}=\widehat{AMK}\) (góc đồng vị) (1)

\(\widehat{mAC}=\frac{1}{2}\) sđ cung AC (góc giữa tiếp tuyến và dây cung) (2)

\(\widehat{AEC}=\frac{1}{2}\) sđ cung AC (góc nội tiếp đường tròn) (3)

\(\widehat{AEC}=\widehat{MEK}\) (góc đối đỉnh) (4)

Từ (1), (2), (3) và (4) \(\Rightarrow\widehat{AMK}=\widehat{MEK}\) (*)

Ta có 

\(\widehat{ACE}=\widehat{EMK}\) (góc so le trong) (5)

\(\widehat{ACE}=\frac{1}{2}\) sđ cung AE  (góc nội tiếp đường tròn)(6)

\(\widehat{MAK}=\frac{1}{2}\) sđ cung AE (góc giữa tiếp tuyến và dây cung) (7)

Từ (5)' (6) và (7) \(\Rightarrow\widehat{MAK}=\widehat{EMK}\) (**)

Từ (*) và (**) => tg AMK đồng dạng với tg MEK

\(\Rightarrow\frac{MK}{EK}=\frac{AK}{MK}\Rightarrow MK^2=AK.EK\left(dpcm\right)\)

b/

Ta có

\(\widehat{KAB}=\frac{1}{2}\) sđ cung BE (góc nội tiếp đường tròn) (1)

\(\widehat{EBK}=\frac{1}{2}\) sđ cung BE ( góc giữa tiếp tuyến và dây cung) (2)

Từ (1) và (2) \(\Rightarrow\widehat{KAB}=\widehat{EBK}\)

Xét tam giác ABK và tam giác EBK có

\(\widehat{KAB}=\widehat{EBK}\) (cmt)

\(\widehat{AKB}\) chung

=> tam giác AKB đồng dạng với tam giác EBK

\(\Rightarrow\frac{KB}{EK}=\frac{AK}{KB}\Rightarrow KB^2=AK.EK\)

Từ kết quả của câu a \(\Rightarrow MK^2=KB^2\Rightarrow MK=KB\left(dpcm\right)\)

30 tháng 1 2021

M A B C E K

a)△AMK~△MEK( Chung góc K và góc MAK=góc ACE=góc KME)

suy ra AK/MK=MK/EK suy ra đpcm 

b)△AKB~△BKE(Chung góc K và góc KAB= góc KBE)

suy ra AK/BK=KB/KE suy ra KB2=AK.KE

kết hợp câu a) suy ra đpcm.

30 tháng 1 2021

a) = AI2

b) điểm D như hình vẽAD=AI2/AB= constant.

 

6 tháng 2 2021

Ta có PQI = PIA ( cùng chắn PI) nên ΔAPI ~ΔAIQ(g.g)

=> AP/AI = AI/AQ =>Ap.AQ= AI^2 ( không đổi )

Giả sử đt ngoại tiếp tấm giác BPQ cắt AB tại D (D khác B)

Khi đó tam giác ADP ~ tam giác AQB =>AD/AQ = AP/AB

hay AD.AB = AP.AQ=AI^2 ( không đổi) 

Do đó điểm D là điểm cố định (đpcm)

30 tháng 1 2021

1000

19 tháng 2 2021

Giải:

Nối M và K

Xét (O) có: \(\hat{AMK}\) là góc nội tiếp chắn cung nhỏ AK

                 \(\hat{KAB}\)  là góc tạo bởi tia tiếp tuyến và dây cung chắn cung nhỏ AK

\(\Rightarrow\) \(\hat{AMK}\) = \(\hat{KAB}\) ( cùng = 1/2 cung nhỏ AK )  (1)

Xét (O') có : \(\hat{BMK}\) là góc nội tiếp chắn cung nhỏ BK

                    \(\hat{KBA}\) là góc tạo bởi tia tiếp tuyến và dây cung chắn cung nhỏ BK

\(\Rightarrow\) \(\hat{BMK}\) = \(\hat{KBA}\) ( cùng =1/2 cung nhỏ BK ) (2)

Từ (1) và (2) \(\Rightarrow\) \(\hat{AMK}\)+\(\hat{BMK}\)=\(\hat{KAB}\)\(\hat{KBA}\)

                      \(\Leftrightarrow\) \(\hat{AMB}\) = 50° = \(\hat{KAB}\) + \(\hat{KBA}\)

Xét △ KAB có: \(\hat{AKB}\) +(\(\hat{KAB}\) + \(\hat{KBA}\) )= 180° ( Tổng ba góc trong một tam giác)

                      \(\Leftrightarrow\) \(\hat{AKB}\) + 50° = 180°

                      \(\Leftrightarrow\)\(\hat{AKB}\) = 180°-50°

                    \(\Leftrightarrow\)\(\hat{AKB}\) = 130°

Vậy \(\hat{AKB}\) có số đo là 130°

 

O A B C D E

a, vì \(AD\) là tia phân giác của góc \(\widehat{BAC}\) \(\Rightarrow\widehat{BAD}=\widehat{EAC}\)

mà \(\widehat{ABD}=\widehat{ABC}=\widehat{AEC}\) 

\(\Rightarrow\Delta ABD~\Delta AEC\) (g-g)

\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AC}\Leftrightarrow AB.AC=AE.AD\)

b, Ta có :

\(\widehat{EBD}=\widehat{EBC}=\widehat{EAC}=\widehat{BAE}\)

\(\Rightarrow\Delta EBD~\Delta EAB\)(g-g)

\(\Rightarrow\frac{EB}{EA}=\frac{ED}{EB}\Leftrightarrow ED.EA=EB^2\)

25 tháng 2 2021

a)xét ΔABE và ΔADC có :

BÅE = DÅC (gt)

AEB=ACB=ACD(cùng chắn cung AB)

=>ΔABE≈ΔADC(g.g)

\(\dfrac{AE}{AC}=\dfrac{AB}{AD}\)(hai cạnh t.ứ)

⇒AE.AD=AC.AB

b)Xét ΔBED và ΔAEB có :

góc E chung

góc EBD=gócEAC=gócEAB

ΔBED  ΔAEB(g.g)

\(\dfrac{ED}{EB}=\dfrac{EB}{EA}\)(hai cạnh t.ứ)

⇒ED.EA=EB2

O A B C D I E K

Ta có :

\(\frac{KC}{sin\widehat{CAK}}=\frac{R\sqrt{2}}{sin\widehat{AKC}}=\frac{R\sqrt{2}}{sin\widehat{AED}}=\frac{AE}{sin\widehat{ADE}}=\frac{AE}{sin\widehat{BIE}}=\frac{AE}{sin\widehat{AIE}}=\frac{3R}{\sqrt{2}}\)

\(\Rightarrow sin\widehat{AKC}=\frac{2}{3}\)

\(\Rightarrow AK=\frac{2}{3R}\)

áp dụng định lý Py ta go vào \(\Delta AOK\) ta được

\(AK^2=AO^2+OK^2\)

\(\Rightarrow OK=\sqrt{R^2-\frac{4}{9R^2}}=\sqrt{9R^4-4}\)

\(\Rightarrow DK=OD-OK=R-\sqrt{9R^4-4}\)

23 tháng 1 2021

\(AK=\frac{2}{\sqrt{3}}R\) chứ bạn?

13 tháng 2 2021

a) Có góc BAD =BOD ( vì cùng chắn cung BD)  (*)
Lại có BAD cũng là góc nt chắn cung BC và góc BOC là góc ở tâm chắn cung BC 
=> BAC =1/2 BOC 
Từ (*) => BOD=1/2 BOC 
=> BOD =COD ( vì cùng =1/2 BOC )
=>OD là tia p/g của góc BOC 
mà tam giác BOC cân tại O 
=> OD là tia p/g đồng thời cũng là đường cao của tam giác BOC 
=> OD vuông góc BD (đpcm)

25 tháng 2 2021

a)Xét đt O có :

ΔOBC cân tại O (OB=OC bk đt O)

Có góc BOD chắn cung BD

Mà góc BAD cùng chắn cung BD

⇒góc BOD=góc BAD=góc BAC

Má góc BAC chắn cung BC

⇒BAC=\(\dfrac{1}{2}\)cung BC

mà BOC = cung BC (cung chắn tâm)

⇒BOD=BAC=\(\dfrac{1}{2}\)BOD

b)Trong đt O',FAB=\(\dfrac{1}{2}\)FOB(góc nội tiếp=nửa góc ở tâm cùng chắn một cung)

Có EAB=EOB(cùng chắn cung EB)

⇒FAB=\(\dfrac{1}{2}\)EAB⇒AF là p|g EAB

cmtt⇒BF là p|g EBA

⇒F LÀ GIAO 3 ĐƯỜNG P|G EAB

 Điểm F cách đều ba cạnh của tam giác ABE