\(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\times\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
rút gọn biểu thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hệ phương trình có nghiệm duy nhất là
\(\left\{{}\begin{matrix}2x-y=3\\x+4y=6\end{matrix}\right.\)
b) Hệ phương trình có vô số nghiệm là
\(\left\{{}\begin{matrix}2x-y=3\\4x-2y=6\end{matrix}\right.\)
\(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{2\left(\sqrt{5}-2\right)}\)
\(=\sqrt{5}+\dfrac{\sqrt{5}}{2}\)
\(=\dfrac{2\sqrt{5}+\sqrt{5}}{2}\)
\(=\dfrac{3\sqrt{5}}{2}\)
A B C D O E F G H x y I
1/
Ta có
sđ cung AC = sđ cung BC (1)
\(sđ\widehat{CFG}=\dfrac{1}{2}\left(sđcungBC+sđcungAE\right)\) (góc có đỉnh ở trong hình tròn) (2)
\(sđ\widehat{CHE}=\dfrac{1}{2}sđcungCAE=\dfrac{1}{2}\left(sđcungAC+sđcungAE\right)\) (góc nội tiếp) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{CFG}=\widehat{CHE}\)
Ta có
\(\widehat{CFG}+\widehat{EFG}=\widehat{EFC}=180^o\)
\(\Rightarrow\widehat{CHE}+\widehat{EFG}=180^o\)
=> EFGH là tứ giác nội tiếp (Tứ giác có hai góc đối bù nhau là tứ giác nội tiếp)
2/
sđ cung AC = sđ cung BC (4)
\(sđ\widehat{AGC}=\dfrac{1}{2}\left(sđcungAC+sđcungBH\right)\) (5) (góc có đỉnh ở trong hình tròn)
\(sđ\widehat{CHy}=\dfrac{1}{2}sđcungCBH=\dfrac{1}{2}\left(sđcungBC+sđcungBH\right)\) (6) (Góc giữa tiếp tuyến và dây cung)
Từ (4) (5) (6) \(\Rightarrow\widehat{AGC}=\widehat{CHy}\)
Mà AC = AG (gt) => tgACG cân tại A \(\Rightarrow\widehat{AGC}=\widehat{ACG}\)
\(\Rightarrow\widehat{ACG}=\widehat{CHy}\) mà 2 góc trên ở vị trí so le trong => xy//AC
\(\sqrt[]{3-\sqrt[]{5}}:\sqrt[]{2}\)
\(=\sqrt[]{3-\sqrt[]{5}}.\dfrac{1}{\sqrt[]{2}}\)
\(=\dfrac{\sqrt[]{3-\sqrt[]{5}}}{\sqrt[]{2}}\)
\(=\sqrt[]{\dfrac{3-\sqrt[]{5}}{2}}\)
Hạ \(OH\perp AB\), \(OK\perp CD\). Dễ thấy tứ giác OHMK là hình chữ nhật \(\Rightarrow HK=OM\)
Lại có \(AB^2=4HB^2=4\left(OB^2-OH^2\right)=4R^2-4OH^2\) (1)
và \(CD^2=4CK^2=4\left(OC^2-OK^2\right)=4R^2-4OK^2\) (2)
Từ (1) và (2), suy ra \(AB^2+CD^2=8R^2-4\left(OH^2+OK^2\right)\) \(=8R^2-4HK^2=8R^2-4OM^2\) không đổi, đpcm.
A B C H D I K
a/
\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10cm\) (pitago)
\(\dfrac{AD}{DC}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\) (T/c đường phân giác)
\(\Rightarrow AD=\dfrac{3}{\left(3+4\right)}.AC=\dfrac{30}{7}cm\)
\(DC=\dfrac{4}{3+4}.AC=\dfrac{40}{7}cm\)
\(AB^2=BH.BC\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\)
\(\Rightarrow CH=BC-BH=10-3,6=6,4cm\)
\(AH^2=BH.CH\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích các hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow AH=\sqrt{BH.CH}=\sqrt{3,6.6,4}=4,8cm\)
b/
Xét tg vuông BHI và tg vuông ABD có
\(\widehat{ABD}=\widehat{CBD}\) (gt)
=> tg BHI đồng dạng với tg ABD \(\Rightarrow\dfrac{BD}{BI}=\dfrac{AB}{BH}\)
Xét tg ABH có
\(\dfrac{AI}{HI}=\dfrac{AB}{BH}\) (t/c đường phân giác )
\(\Rightarrow\dfrac{BD}{BI}=\dfrac{AI}{HI}\Rightarrow AI.BI=BD.HI\)
c/
HK//BD => HK//DI => DIHK là hình thang
Ta có tg BHI đồng dạng với tg ABD (cmt)
\(\Rightarrow\widehat{BIH}=\widehat{ADB}\) (1)
Ta có HK//BD (gt)
\(\Rightarrow\widehat{BIH}=\widehat{IHK}\) (góc so le trong) (2)
\(\Rightarrow\widehat{ADB}=\widehat{DKH}\) (góc đồng vị) (3)
Từ (1) (2) và (3) \(\Rightarrow\widehat{IHK}=\widehat{DKH}\)
=> DIHK là hình thang cân
\(P=\dfrac{2x\sqrt[]{x}-\sqrt[]{x}+1}{x-1}\left(x\ge0;x\ne1\right)\)
\(\Rightarrow P=\dfrac{x\sqrt[]{x}-\sqrt[]{x}+x\sqrt[]{x}+1}{x-1}\)
\(\Rightarrow P=\dfrac{\sqrt[]{x}\left(x-1\right)+\sqrt[]{x^3}+1}{x-1}\)
\(\Rightarrow P=\dfrac{\sqrt[]{x}\left(x-1\right)}{x-1}+\dfrac{\left(\sqrt[]{x}+1\right)\left(x-\sqrt[]{x}+1\right)}{\left(\sqrt[]{x}-1\right)\left(\sqrt[]{x}+1\right)}\)
\(\Rightarrow P=\sqrt[]{x}+\dfrac{\left(x-\sqrt[]{x}+1\right)}{\left(\sqrt[]{x}-1\right)}\)
Áp dụng định lí Py-ta-go vào tam giác vuông ABC, ta có:
\(AC=\sqrt{BC^2-AB^2}=\sqrt{8^2-6^2}=2\sqrt{7}\)
Áp dụng hệ thức lượng trong tam giác vuông ABC, ta có:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{6^2}+\dfrac{1}{\left(2\sqrt{7}\right)^2}\\ \Rightarrow AH=\dfrac{3\sqrt{7}}{2}\)
Áp dụng hệ thức lượng trong tam giác vuông ABC, ta có:
\(AB^2=BH\cdot BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{8}=\dfrac{9}{2}\)
Ta có:
\(sin\left(\widehat{ACB}\right)=\dfrac{AB}{BC}=\dfrac{6}{8}=\dfrac{3}{4}\\ \Rightarrow\widehat{ACB}\simeq48^o35'\)