K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2023

Ta có:

- Vì ON = OP < R/2, nên N và P nằm trong đường tròn tâm O, nên A, C, B, D đều nằm trên đường tròn (O).

- Vì AC // BD, nên theo định lí của dây cung, ta có: AM = MC và BM = MD.

- Ta có: ∠BAC = ∠BMC (do ABMC là hình bình hành) và ∠ACB = ∠AMB (do ABMC là hình bình hành).

- Vậy tứ giác ABMC là tứ giác cùng tứ giác nội tiếp, nên ta có: ∠BMC + ∠AMB = 180°.

- Từ đó, ta có: ∠BAC + ∠ACB = 180°.

- Vậy tứ giác ABCD là tứ giác điều hòa.

- Gọi K' là giao điểm của BD và AO. Ta cần chứng minh K', Q, A đồng quy.

- Ta có: ∠QAC = ∠QDC (do AC // BD) và ∠QCA = ∠QCB (do ABMC là hình bình hành).

- Vậy tứ giác AQCD là tứ giác cùng tứ giác nội tiếp, nên ta có: ∠QDC + ∠QCA = 180°.

- Từ đó, ta có: ∠QAC + ∠QCA = 180°.

- Vậy tứ giác AQCK' là tứ giác điều hòa.

- Vậy K', Q, A đồng quy. - Vậy KQ, BD, AO đồng quy.\

Xin tick!!

16 tháng 7 2023

\(6x^2y^4+3x^2-10y^3=-2\)

\(\Leftrightarrow3x^2\left(2y^3+1\right)-10y^3-5+5=-2\)

\(\Leftrightarrow3x^2\left(2y^3+1\right)-5\left(2y^3+1\right)=-7\)

\(\Leftrightarrow\left(3x^2-5\right)\left(2y^3+1\right)=-7\)

\(\Rightarrow\left(3x^2-5\right);\left(2y^3+1\right)\in\left\{-1;1;-7;7\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(\pm\dfrac{2}{\sqrt[]{3}};\sqrt[3]{3}\right);\left(\pm\sqrt[]{2};\sqrt[3]{4}\right);\left(\varnothing;0\right);\left(\pm2;-1\right)\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(\pm2;-1\right)\right\}\left(x;y\in Z\right)\)

 

16 tháng 7 2023

6x2y3 +3x2 - 10y3 = -2

\(_{_{ }^{ }\Leftrightarrow}\) 2y3(3x\(-\) 2) + 3x2 \(-\) 2= -4

\(_{_{ }^{ }\Leftrightarrow}\)\(\left(3x^2-2\right)\left(2y^3+1\right)=-4=-1.4=-2.2\)

Vì x2 \(\ge\)0 nên 3x2 -2 ​​\(\ge\)-2

Ta có các trường hợp:

TH1: \(\left\{{}\begin{matrix}3x^2-2=-1\\2y^3+1=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\pm\dfrac{1}{\sqrt{3}}\\y=\sqrt[3]{\dfrac{3}{2}}\end{matrix}\right.\)

TH2: ​\(\left\{{}\begin{matrix}3x^2-2=2\\2y^3+1=-2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\pm\dfrac{2}{\sqrt{3}}\\y=\sqrt[3]{\dfrac{-3}{2}}\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}3x^2-2=-2\\2y^3+1=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=0\\y=\sqrt[3]{\dfrac{1}{2}}\end{matrix}\right.\)

Vậy .....

 

16 tháng 7 2023

\(tangB=\dfrac{BC}{AC}\Rightarrow AC=\dfrac{BC}{tangB}=\dfrac{6}{0,5}=12\)

16 tháng 7 2023

ĐKXĐ : \(x>0\)

Áp dụng bất đẳng thức Cauchy cho 2 số dương \(\sqrt{x};\dfrac{4}{\sqrt{x}}\) ta có 

\(P=\sqrt{x}+\dfrac{4}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{4}{\sqrt{x}}}=4\)

Dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{4}{\sqrt{x}}\Leftrightarrow x=4\)

16 tháng 7 2023

\(P=\sqrt[]{x}+\dfrac{4}{\sqrt[]{x}}\left(x>0\right)\)

\(P=\dfrac{x+4}{\sqrt[]{x}}=\dfrac{x+4}{\sqrt[]{x}}\)

Vì \(x>0;x+4>4\)

\(\Rightarrow P=\dfrac{x+4}{\sqrt[]{x}}>4\)

⇒ Không có giá trị nhỏ nhất

16 tháng 7 2023

Theo đề có:

����=��2��2=4262=49

Tam giác HDC ∼ tam giác HBA nên: 

����=����=49⇒��=��.49=6.49=83(��)

Từ C kẻ CK là đường cao của tam giác ABC có: ��=��−��=6−83=103(��)

⇒��=2443=2613(��)

Xét tam giác vuông ABD có ��=��2+��2=62+42=213(��)

16 tháng 7 2023

.

 

AH
Akai Haruma
Giáo viên
16 tháng 7 2023

Lời giải:

Lần sau bạn nhớ ghi đầy đủ đề. $ABC$ là tam giác vuông tại $A$.

$\frac{AB}{AC}=\frac{3}{4}$

$\Rightarrow AC=\frac{4AB}{3}=\frac{4.15}{3}=20$ (cm)

Áp dụng định lý Pitago:

$y=BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25$ (cm) 

$S_{ABC}=AB.AC:2=AH.BC:2$

$\Rightarrow AB.AC=AH.BC$

$\Rightarrow x=AH=\frac{AB.AC}{BC}=\frac{15.20}{25}=12$ (cm)

15 tháng 7 2023

\(x^2+\sqrt[]{x}\) là gì bạn ?

18 tháng 7 2023

rút gọn

 

15 tháng 7 2023

có `cos α=1/2`

`=>cos^2 α=1/4`

Mà `cos^2 α +sin^2 α=1`

`=>1/4+sin^2 α=1`

`=>sin^2 α=1-1/4=3/4`

\(=>sin\alpha=\dfrac{\sqrt{3}}{2}\) (vì `sin α` >0)

ta có `sin α : cos α=tan α`

\(=>tan\alpha=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)

ta có `tan α * cot α =1`

\(=>\sqrt{3}\cdot cot\alpha=1\\ =>cot\alpha=\dfrac{1}{\sqrt{3}}\)

tương tự ta có

\(\left\{{}\begin{matrix}sin\beta=\dfrac{\sqrt{2}}{2}\\cos\beta=1\\cot\beta=1\end{matrix}\right.\)