K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐK \(x\ne0,y\ne0\)

Hệ\(\Leftrightarrow\hept{\begin{cases}x-y+\frac{x-y}{xy}=0\left(1\right)\\x^3=2y-1\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\xy=-1\end{cases}}\)

Xét x=y => \(\left(2\right)\Leftrightarrow x^3-2x+1=0\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\\x=\frac{-1\pm\sqrt{5}}{2}=y\end{cases}}\)

Xét xy=-1

\(\left(2\right)\Leftrightarrow x^3+\frac{2}{x}+1=0\Leftrightarrow x^4+x+2=0\)(vô nghiệm)

Vậy/////

Ta có : \(3a^2+3b^2=10ab\)

\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2=\frac{16ab}{2}\left(1\right)\\\left(a-b\right)^2=\frac{4ab}{3}\left(2\right)\end{cases}}\)

Lấy (1) chia (2) ta được:

\(\left(\frac{a+b}{a-b}\right)^2=6\Rightarrow\frac{a+b}{a-b}=\sqrt{6}\)

10 tháng 2 2020

giải giúp với :>

10 tháng 2 2020

:3 giải hộ với ạ plss:>