Dựng hình vuông ABCD biết điểm A và trung điểm M của cạnh BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi điểm M chuyển động trên đường tròn đường kính AB thì điểm I cũng chuyển động, nhưng luôn nhìn đoạn thẳng AB cố định dưới góc 26o34’, vậy điểm I thuộc hai cung chứa góc 26o34’ dựng trên đoạn thẳng AB (hai cung và )
Phần đảo:
Lấy điểm I' bất kì thuộc hoặc , I'A cắt đường tròn đường kính AB tại M'.
Tam giác vuông BMT, có tg = = tg26o34’
Kết luận: Quỹ tích điểm I là hai cung và
Dự đoán: Quỹ tích điểm I là hai cung là các cung chứa góc 26º34’ dựng trên đoạn AB.
Chứng minh:
+ Phần thuận :
Theo phần a): không đổi
I nằm trên cung chứa góc 26º34’ dựng trên đoạn AB cố định
Kẻ tiếp tuyến của đường tròn tại A cắt hai cung chứa góc 26º34’ dựng trên đoạn AB tại C và D
Khi M di động trên đường tròn đường kính AB cố định thì I di động trên cung BC và BD
⇒ I nằm trên hai cung chứa góc 26º34’ dựng trên đoạn AB cố định.
+ Phần đảo:
Lấy điểm I bất kỳ nằm trên hai cung nhìn AB dưới 1 góc 26º34’.
AI cắt đường tròn đường kính AB tại M.
⇒ BM /MI = tan I = 1/2.
Kết luận: Quỹ tích điểm I là hai cung nhìn AB dưới góc 26º34’ (hình vẽ).
Trình tự dựng gồm 3 bước:
- Dựng đoạn thẳng BC = 6cm
- Dựng cung chứa góc 40o trên đoạn thẳng BC.
- Dựng đường thẳng xy song song với BC và cách BC một khoảng là 4cm như sau:
Trên đường trung trực d của đoạn thẳng BC lấy đoạn HH' = 4cm (dùng thước có chia khoảng mm). Dựng đường thẳng xy vuông góc với HH' tại H
Gọi giao điểm xy và cung chứa góc là , . Khi đó tam giác ABC hoặc A'BC đều thỏa yêu cầu của đề toán
Cách dựng:
+ Dựng đoạn thẳng BC = 6cm.
+ Dựng cung chứa góc 40º trên đoạn thẳng BC (tương tự bài 46) :
Dựng tia Bx sao cho
Dựng tia By ⊥ Bx.
Dựng đường trung trực của BC cắt By tại O.
Dựng đường tròn (O; OB).
Cung lớn BC chính là cung chứa góc 40º dựng trên đoạn BC.
+ Dựng đường thẳng d song song với BC và cách BC một đoạn 4cm:
Lấy D là trung điểm BC.
Trên đường trung trực của BC lấy D’ sao cho DD’ = 4cm.
Dựng đường thẳng d đi qua D’ và vuông góc với DD’.
+ Đường thẳng d cắt cung lớn BC tại A.
Ta được ΔABC cần dựng.
Chứng minh:
+ Theo cách dựng có BC = 6cm.
+ A ∈ cung chứa góc 40º dựng trên đoạn BC
+ A ∈ d song song với BC và cách BC 4cm
⇒ AH = DD’ = 4cm.
Vậy ΔABC thỏa mãn yêu cầu đề bài.
Biện luận: Do d cắt cung lớn BC tại hai điểm nên bài toán có hai nghiệm hình.
Tam giác \(ABO\)vuông tại \(O\). Do đó điểm \(O\)luôn thuộc đường tròn đường kính \(AB\)(trừ 2 điểm \(A\)và \(B\)).
Ta đã biết rằng hai đường chéo hình thoi vuông góc với nhau, vậy điểm O nhìn AB cố định dưới góc 90o.
Quỹ tích điểm O là nửa đường tròn đường kính AB
Trình tự dựng như sau:
- Dựng đoạn thẳng AB = 3cm (dùng thước đo chia khoảng mm)
- Dựng góc = 55o (dùng thước đo góc và thước thẳng)
- Dựng tia Ay vuông góc với Ax (dùng êke)
- Dựng đường trung trực d của đoạn thẳng AB (dùng thước có chi khoảng và êke). Gọi O là giao điểm của d và Ay.
- Dựng đường tròn tâm O, bán kính OA (dùng compa)
Ta có: là cung chứa góc 55odựng trên đoạn thẳng AB = 3cm (một cung)
Dựng đoạn thẩng AB bằng 3cm dựng góc xAB =55* dựng tia AY vuông góc vs tia Ax dựng đg trung trực d của đoạn thẳng AB/ d cắt Ay tại O . Dựng đg tròn tâm O bán kính OA cung AmB là góc 55 độ cần dựng
Đk: \(\forall\)x \(\in\)R
\(x^2+5x+\sqrt{x^2+5x+30}=12\)
<=> \(x^2+5x+30+\sqrt{x^2+5x+30}-42=0\)
Đặt \(\sqrt{x^2+5x+30}=a\)(a > 0) <=> \(x^2+5x+30=a^2\)
Khi đó, ta có: \(a^2+a-42=0\)
<=> \(a^2+7a-6b-42=0\)
<=> \(\left(a-6\right)\left(a+7\right)=0\)
<=> \(\orbr{\begin{cases}a=6\left(tm\right)\\a=-7\left(ktm\right)\end{cases}}\)
<=> \(\sqrt{x^2+5x+30}=6\)
<=> \(x^2+5x+30=36\)
<=> \(x^2+5x-6=0\)
<=> \(x^2+6x-x-6=0\)
<=> \(\left(x+6\right)\left(x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=-6\\x=1\end{cases}}\)
Vậy S = {-6; 1}
\(ĐKXĐ:x\inℝ\)
\(x^2+5x+\sqrt{x^2+5x+30}=12\)
\(\Leftrightarrow x^2+5x+30+\sqrt{x^2+5x+30}=42\)
\(\Leftrightarrow\left(x^2+5x+30\right)+\sqrt{x^2+5x+30}-42=0\)(1)
Đặt \(\sqrt{x^2+5x+30}=a\)( \(a\ge0\))
\(\Rightarrow x^2+5x+30=a^2\)
Từ (1) \(\Rightarrow a^2+a-42=0\)
\(\Leftrightarrow a^2-6a+7a-42=0\)
\(\Leftrightarrow a\left(a-6\right)+7\left(a-6\right)=0\)
\(\Leftrightarrow\left(a-6\right)\left(a+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-6=0\\a+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=6\\a=-7\end{cases}}\)
\(\Rightarrow a=-7\)loại vì \(a\ge0\)
\(\Rightarrow a=6\)\(\Leftrightarrow\sqrt{x^2+5x+30}=6\)
\(\Leftrightarrow x^2+5x+30=36\)\(\Leftrightarrow x^2+5x-6=0\)
\(\Leftrightarrow x^2-x+6x-6=0\)\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-6\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;-6\right\}\)
có C = 1/2 ( sđ AN- sđ MB )
D= = 1/2 ( sđ AM - sđ NB )
mà góc C= D
nên sđ AN - sđ MB = sđ AM - sđ NB
=> sđ AN + sđ NB = sđ MB + sđ AM
=> sđAB = sđ AB
=> AB là đường kính của đg tròn ( O )
khi đó AMB = ANB = 90 độ ( góc nội tiếp chắn nửa đg tròn ) mà MD , CN , AB giao nhau tại B => B là trực tâm tgiac ACD => AB vuông góc CD
Có C=1/2(sđAN-sđMB)
D=1/2(sđAM-sđNB)
Mà góc C =D
Nên sđAN-sđMB=sđAM-sđNB
=>sđAN+sđNB=sđMB+sđAM
=>sđAB=sđAB
=>AB là đường kính đường tròn (O)
khi đó AMB=ANB=90độ (góc nội tiếp chắn nửa đường tròn ) mà MD, CN, AB giao nhau tại B => B là trực tâm tam giác ACD => AB vuông góc CD
có sđ AB = sđ BC = sđ CD
mà BIC = 1/2 ( sđ AD - sđ BC ) =1/2 ( sđ BD - sđ AB -sđ BC )
BKD = 1/2 ( sđ BD - sđ BC-sđ CD )
nên BIC=BKD
b,KBC = CDB ( góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung CD)
mà CDB = CBD ( BC = CD )
nên KBC = CBD => BC là tia pg của KBD
A)
Vì góc BIC có đỉnh nằm ngoài đường tròn
nên: góc BIC = \(\dfrac{sđAD-sđBC}{2}\)
Mà: sđAD = \(\dfrac{sđBD+sđAB}{2}\) ; sđBC = sđ AB = sđCD
=> góc BIC = \(\dfrac{sđBD+sđAB-sđAB}{2}\) = \(\dfrac{sđBD}{2}\) (1)
Ta có: góc BKD = \(\dfrac{sđBD}{2}\) (2)
từ (1) và (2) => góc BIC = góc BKD
B)
Vì góc KBC và góc BDC cùng chắn cung BC
=> góc KBC = góc BDC (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung )
Ta có: sđBC = sđCD (gt)
nên: góc BDC = góc DBC (hai góc nội tiếp chắn hai cung bằng nhau)
Vậy góc KBC = góc DBC (cùng bằng góc BDC)
hay: BC là tia phân giác của góc DBK
gọi AB giao ( T ) tại K
có AD là tia phân giác của BAC => sđ cung KD = sđ MD
mà PBE = 1/2 ( sđ MD - sđ PD) =1/2 ( sđ KD-sđ PD ) =1/2 sđ KP = BAE
khi CM đc tam giác ABE ~ tam giác BPE ( g - g)
=> BE2 = EP.EA
gọi AB giao (T) tại K
Có AD là tia phân giác của BAC =>sđ cung KD= sđ MD
Mà PBE =1/2(sđMD-sđPD)=1/2(sđKD-sđPD)=1/2sđKP=BA
Ta CM được : tam giác ABE~tam giác BPE(g.g)
=>BE^2=EP.EA