Xét dấu các biểu thức
f(x) = 2-3x
f(x) = x(x+1)
f(x) = (2x-3)(x+1)/ -x+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\left(m-1\right)x^2-2mx+m+2\)(1)
+) Nếu \(m-1=0\Leftrightarrow m=1\)thì :
(1) \(\Leftrightarrow y=-2x+3\)là hàm số bậc nhất có hệ số góc \(-2< 0\Rightarrow\)hàm số nghịch biến trên \(R\)
=> Hàm số nghịch biến trên \(\left(-\infty;2\right)\)
Vậy khi \(m=1\)hàm số nghịch biến trên \(\left(-\infty;2\right)\)(2)
+) Nếu \(m-1\ne0\Leftrightarrow m\ne1\)thì (1) là hàm số bậc hai
(1) nghịch biến trên \(\left(-\infty;2\right)\)thì đồ thị h/s có bề lõm hướng lên trên
\(\Rightarrow\hept{\begin{cases}a=m-1>0\\-\frac{b}{2a}\ge2\end{cases}}\Leftrightarrow\hept{\begin{cases}m>1\\\frac{2m}{2\left(m-1\right)}\ge2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m>1\\m-2\left(m-1\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>1\\m\le2\end{cases}}\)
\(\Rightarrow1< m\le2\)\(\Leftrightarrow\hept{\begin{cases}m>1\\m-2\left(m-1\right)\ge0\Leftrightarrow\hept{\begin{cases}m>1\\m\le2\end{cases}}\end{cases}}\)(3)
Từ (2) và (3) suy ra hàm số nghịch biến trên \(\left(-\infty;2\right)\)thì \(1\le m\le2\)
\(\frac{x}{2}+\frac{2}{x-1}\)\(=\frac{x-1}{2}\)\(+\frac{2}{x-1}\)\(+\frac{1}{2}\)\(\ge\sqrt{\frac{x-1}{2}.\frac{2}{x-1}}\)\(+\frac{1}{2}\)\(=...\)
copy nhớ ghi nguồn + viết đầy đủ nhé :))
\(y=\frac{x}{2}+\frac{2}{x-1}=\frac{x-1+1}{2}+\frac{2}{x-1}\)
\(=\frac{x-1}{2}+\frac{1}{2}+\frac{2}{x-1}\)
Theo AM-GM ta có : \(\frac{x-1}{2}+\frac{1}{2}+\frac{2}{x-1}\ge2\sqrt{\frac{x-1}{2}\cdot\frac{2}{x-1}}+\frac{1}{2}=2+\frac{1}{2}=\frac{5}{2}\)
Đẳng thức xảy ra <=> \(\frac{x-1}{2}=\frac{2}{x-1}\)
<=> ( x - 1 )2 = 4
<=> ( x - 1 )2 - 22 = 0
<=> ( x - 3 )( x + 1 ) = 0
<=> x = 3 ( tm ) hoặc x = -1 ( ktm )
=> x = 3
Vậy Min(y) = 5/2, đạt được khi x = 3