CHo phương trình
\(^{x^2-2mx+2m-1=0}\)
TÌm m để phương trình đã cho có 2 nghiệm phân biệt x1, x2 thỏa mãn \(|x1-x2|=16\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\frac{2+a}{1+a}+\frac{1-2b}{1+2b}\)
\(=\frac{1+a+1}{1+a}+\frac{-\left(1+2b\right)+1}{1+2b}\)
\(=1+\frac{1}{1+a}-1+\frac{1}{1+2b}\)
\(=\frac{1}{1+a}+\frac{1}{1+2b}\)
\(a+b\le2\Rightarrow a\le2-b\)
Đến đây đưa được về biến b rồi ó,giờ thì đạo hàm làm nốt nha !
bạn có thể làm nốt cho mk đc ko , mk ko biết đạo hàm là gì cả ?
Put \(A=2+2^2+2^3+...+2^{99}\)
Infer \(2A=2^2+2^3+2^4+...+2^{100}\)
\(\Rightarrow2A-A=2^2+2^3+2^4+...+2^{100}-2-2^2-2^3-...-2^{99}\)
\(\Rightarrow A=2^{100}-2\)
Easy to see \(2^{100}=2^{4.25}\)Excess cessation takes the form \(2^{4n}\)
So \(2^{100}\)has the end number as 6
Candlesk \(2^{100}-2\)has the end number as 4
So \(2+2^2+2^3+...+2^{99}\)has the end number as 4
dk \(x\ge-1\)
dat \(x=a\ge-1,\sqrt{x+1}=b\ge0\)
=> \(\hept{\begin{cases}a^2+2b^2=3ab.\left(1\right)\\b^2-a=1.\left(2\right)\end{cases}}\)
xet a=0 => x=0 ko phai la nghiem pt =>
(1) <=> \(1+2\left(\frac{b}{a}\right)^2-3\frac{b}{a}=0\Leftrightarrow\orbr{\begin{cases}\frac{b}{a}=1\\\frac{b}{a}=\frac{1}{2}\end{cases}}\)
<=> \(\orbr{\begin{cases}b=a\\a=2b\end{cases}}\)
th b=a thay vao (2) => \(b^2-b-1=0\Rightarrow b=\frac{1+\sqrt{5}}{2}\)=a=x (tmdk)
th a=2b thay vao (2) => \(b^2-2b-1=0\Rightarrow b=1+\sqrt{2}=>x=a=2+2\sqrt{2}\)(tmdk)
Vay \(S=\left\{2+2\sqrt{2};\frac{1+\sqrt{5}}{2}\right\}\)
Ta có \(\Delta'=\left(-m\right)^2-1\left(2m-1\right)\)
= \(m^2-2m+1=\left(m-1\right)^2\)
Phương trình có 2 nghiệm phân biệt x1,x2\(\Leftrightarrow\Delta'>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m\ne1\)
Áp dụng hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=2m-1\end{cases}}\)
Ta có \(\left|x_1-x_2\right|=16\Leftrightarrow\left(x_1-x_2\right)^2=256\)\(\Leftrightarrow x_1^2-2x_1x_2+x_2^2=256\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=256\)
ĐẾN ĐÂY THÌ BẠN THAY VÀO RỒI TỰ LÀM TIẾP NHÉ. HỌC TỐT