tìm max của \(\sqrt{ }\)x + 2 / \(\sqrt{ }\)x - 3 mn giúp mik vs ạ mik kh biết cách trình bày
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Diện tích mảnh vườn là:
\(42\times42=1764\left(m^2\right)\)
b.
Số ki-lô-gam rau thu hoạch được là:
\(1764\times5:2=4410\left(kg\right)\)
Diện tích mảnh vườn là: 42 x 4 = 168 m2
Trên cả mảnh vườn đó người ta thu hoạch được số ki -lô -gam rau là: 5 x (168:2) = 420 kg
Đáp số: a 168m2 b 420 kg rau
nếu đúng thì tick cho mik nhá
\(6x=3y=5z\Rightarrow\dfrac{x}{5}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{x}{5}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{2x}{10}=\dfrac{3y}{30}=\dfrac{z}{6}=\dfrac{2x+3y+z}{10+30+6}=\dfrac{-92}{46}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=-2.5=-10\\y=-2.10=-20\\z=-2.6=-12\end{matrix}\right.\)
a: Sửa đề: MH//CD
Xét ΔADC có
M,H lần lượt là trung điểm của AD,AC
=>MH là đường trung bình của ΔADC
=>MH//DC và \(MH=\dfrac{DC}{2}\)
Xét ΔCABcó
N,H lần lượt là trung điểm của CB,CA
=>NH là đường trung bình của ΔCAB
=>NH//AB và \(NH=\dfrac{AB}{2}\)
b: MH+HN<=MN
=>\(\dfrac{1}{2}\left(AB+CD\right)< =MN\)
=>\(MN>=\dfrac{1}{2}\left(AB+CD\right)\)
Gọi d=ƯCLN(2n+3;4n+4)
=>\(\left\{{}\begin{matrix}2n+3⋮d\\4n+4⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4n+6⋮d\\4n+4⋮d\end{matrix}\right.\)
=>\(4n+6-4n-4⋮d\)
=>\(2⋮d\)
mà 2n+3 lẻ
nên d=1
=>ƯCLN(2n+3;4n+4)=1
=>\(\dfrac{2n+3}{4n+4}\) là phân số tối giản
\(15\cdot36-23\cdot15\)
\(=15\left(36-23\right)\)
\(=15\cdot13=195\)
6x=5y
=>\(\dfrac{x}{5}=\dfrac{y}{6}\)
mà 2x-y=44
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{2x-y}{2\cdot5-6}=\dfrac{44}{4}=11\)
=>\(x=11\cdot5=55;y=11\cdot6=66\)
a: Xét ΔABC có EI//BC
nên \(\dfrac{AE}{AB}=\dfrac{AI}{AC}\left(1\right)\)
Xét ΔADC có FI//DC
nên \(\dfrac{AI}{AC}=\dfrac{AF}{AD}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AE}{AB}=\dfrac{AF}{AD}\)
Xét ΔABD có \(\dfrac{AE}{AB}=\dfrac{AF}{AD}\)
nên EF//BD
b: Xét ΔCBA có GI//AB
nên \(\dfrac{CG}{BG}=\dfrac{CI}{IA}\left(3\right)\)
Xét ΔCAD có IH//AD
nên \(\dfrac{CI}{IA}=\dfrac{CH}{HD}\left(4\right)\)
Từ (3),(4) suy ra \(\dfrac{CG}{BG}=\dfrac{CH}{HD}\)
=>\(CG\cdot HD=BG\cdot CH\)
Đề không rõ ràng. Bạn xem lại.