cho \(a=\sqrt[3]{7+\sqrt{50}},b=\sqrt[3]{7-\sqrt{50}}\) . Hãy CM biểu thức M=a+b và \(N=a^7+b^7\) có giá trị đều là số chẵn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Nghiệm j mà lẻ quá trời :))))
Hệ \(\Leftrightarrow\hept{\begin{cases}xy+10y-\frac{1}{2}x-5=xy\\xy-10y+x-10=xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}10y-\frac{1}{2}x-5=0\left(1\right)\\x-10y-10=0\left(2\right)\end{cases}}\)
Lấy (1) cộng (2) ta được:
\(x-\frac{1}{2}x-15=0\)
\(\Leftrightarrow2x-x-30=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{241}}{4}\left(3\right)\\x=\frac{1-\sqrt{241}}{4}\left(4\right)\end{cases}}\)
Thay (3) vào (2) ta được:
\(10y+10=\frac{1+\sqrt{241}}{4}\)
\(\Rightarrow y=\frac{-39+\sqrt{241}}{40}\)
Thay (4) vào (2) ta được \(y=-\frac{39+\sqrt{241}}{40}\)
Vậy.................
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^4+9x^2=0\)
\(\Leftrightarrow x^2\left(x^2+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}\)
Vậy ........
Ta có \(x^4\ge0\) và \(9x^2\ge0\)
=> \(x^4+9x^4\ge0\)
=> dấu '=' xảy ra khi x=0
Vậy x=0
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(A=\sqrt{x^2-6x+36}+\sqrt{x^2-6x+64}=18\)
\(B=\sqrt{x^2-6x+64}-\sqrt{x^2-6x+36}\)
\(\Rightarrow A.B=\left(x^2-6x+64\right)-\left(x^2-6x+36\right)=28\)
mà \(A=18\Rightarrow B=\frac{28}{18}=\frac{14}{9}\)