Câu 10 (2,5 điểm). Cho hai biểu thức $P=\dfrac{2{{x}^{2}}-1}{{{x}^{2}}+x}-\dfrac{x-1}{x}+\dfrac{3}{x+1}$ với $x\ne 0, \, x\ne -1$ và $Q=\dfrac{x+1}{{{x}^{2}}-9}$ với $x\ne \pm 3$.
a) Tính giá trị biểu thức $Q$ khi $x=2$.
b) Rút gọn biểu thức $P$.
c) Đặt $M=P.Q$. Tìm $x$ để $M=\dfrac{-1}{2}$.
a)Thay x=2(TMDK) vào bt Q :
\(Q=\dfrac{2+1}{2^2-9}=-\dfrac{3}{5}\)
b) \(P=\dfrac{2x^2-1}{x^2+x}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\\ =\dfrac{2x^2-1}{x\left(x+1\right)}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\\ =\dfrac{2x^2-1-\left(x-1\right)\left(x+1\right)+3x}{x\left(x+1\right)}\\ =\dfrac{2x^2-1-\left(x^2-1\right)+3x}{x\left(x+1\right)}\\ =\dfrac{x^2+3x}{x\left(x+1\right)}=\dfrac{x\left(x+3\right)}{x\left(x+1\right)}=\dfrac{x+3}{x+1}\)
c) \(M=P.Q=\dfrac{x+3}{x+1}.\dfrac{x+1}{x^2-9}\\ =\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{1}{x-3}\)
\(M=-\dfrac{1}{2}\\ =>\dfrac{1}{x-3}=-\dfrac{1}{2}\\ =>x-3=-2\\ =>x=1\left(TMDK\right)\)