K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5

bạn có bị gì không? tự nhiên diễn đàn của người ta mà đi hehe là sao? muốn báo cáo không?

4
456
CTVHS
3 tháng 5

@Đào Ngọc Ngân bọn này ở trường Victory thuộc tỉnh Buôn Ma Thuộc đó.

4
456
CTVHS
3 tháng 5

 

hết cái bọn hoàng văn thụ r đến cái bọn victory.

3 tháng 5

bạn bị khùng à? không phải mình nói xấu bạn mà bạn đang quấy rối đấy

38 tấn 270kg=38270kg

Trong 5 tháng tiếp theo, cửa hàng bán được:

7905x5=39525(kg)

Số lượng gạo cửa hàng bán được trong 10 tháng là:

38270+39525=77795(kg)

a: Bạn ghi lại đề nhé

b: Xét ΔBAH và ΔBDH có

BA=BD

AH=DH

BH chung

Do đó: ΔBAH=ΔBDH

=>\(\widehat{ABH}=\widehat{DBH}\)

Xét ΔBAE và ΔBDE có

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔBAE=ΔBDE
=>EA=ED

=>ΔEAD cân tại E
c: Ta có: ΔBAE=ΔBDE

=>\(\widehat{BAE}=\widehat{BDE}=90^0\)

=>DE\(\perp\)BC

Ta có: EA=ED

mà EM>EA(ΔEAM vuông tại A)

nên EM>ED

d: Đề sai rồi bạn

1

1: \(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

\(=\dfrac{2x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

\(=\dfrac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{1}{\sqrt{x}-1}\)

\(\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(=\dfrac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}-\sqrt{x}\)

\(=1-\sqrt{x}+x-\sqrt{x}=x-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\)

\(B=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)+\dfrac{2-2\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{2-2\sqrt{x}}{\sqrt{x}}\)

\(=\sqrt{x}-1+\dfrac{2-2\sqrt{x}}{\sqrt{x}}=\dfrac{x-\sqrt{x}+2-2\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{x-3\sqrt{x}+2}{\sqrt{x}}=\left(\sqrt{x}-1\right)\cdot\dfrac{\left(\sqrt{x}-2\right)}{\sqrt{x}}\)

2:

a:

Để B=0 thì \(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}}=0\)

=>\(\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)

=>\(\left[{}\begin{matrix}x=1\left(loại\right)\\x=4\left(nhận\right)\end{matrix}\right.\)

b: \(B+\dfrac{3\sqrt{x}-4}{\sqrt{x}}< =0\)

=>\(\dfrac{x-3\sqrt{x}+2+3\sqrt{x}-4}{\sqrt{x}}< =0\)

=>x-2<=0

=>x<=2

kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< x< =2\\x\ne1\end{matrix}\right.\)

3: Để B là số nguyên thì \(x-3\sqrt{x}+2⋮\sqrt{x}\)

=>\(\sqrt{x}\left(\sqrt{x}-3\right)+2⋮\sqrt{x}\)

=>\(2⋮\sqrt{x}\)

=>\(\sqrt{x}\in\left\{1;2\right\}\)

=>\(x\in\left\{1;4\right\}\)

Kết hợp ĐKXĐ, ta được: x=4

3 tháng 5

 

a) Xét hai tam giác vuông: \(\Delta BHF\) và \(\Delta CHE\) có:

\(\widehat{BHF}=\widehat{CHE}\) (đối đỉnh)

\(\Rightarrow\Delta BHF\) ∽ \(\Delta CHE\) (g-g)

\(\Rightarrow\dfrac{HB}{HC}=\dfrac{HF}{HE}\)

\(\Rightarrow HE.HB=HC.HF\)

b) Xét hai tam giác vuông: \(\Delta AFC\) và \(\Delta AEB\) có:

\(\widehat{A}\) chung

\(\Rightarrow\Delta AFC\) ∽ \(\Delta AEB\) (g-g)

\(\Rightarrow\dfrac{AF}{AE}=\dfrac{AC}{AB}\)

\(\Rightarrow\dfrac{AF}{AC}=\dfrac{AE}{AB}\)

Xét \(\Delta AEF\) và \(\Delta ABC\) có:

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\) (cmt)

\(\widehat{A}\) chung

\(\Rightarrow\Delta AEF\) ∽ \(\Delta ABC\) (c-g-c)

a: Ta có: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ACB}=90^0-35^0=55^0\)

b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

BA=BD

Do đó; ΔBAE=ΔBDE

c: Ta có: ΔBAE=ΔBDE

=>EA=ED

Xét ΔEAK vuông tại A và ΔEDC vuông tại D có

EA=ED

\(\widehat{AEK}=\widehat{DEC}\)(hai góc đối đỉnh)

Do đó: ΔEAK=ΔEDC

=>EK=EC

3 tháng 5

\(2xy+y-14=4x\)

\(4x-2xy-y+14=0\)

\(\left(4x-2xy\right)-y=-14\)

\(2x\left(2-y\right)+2-y=-14+2\)

\(2x\left(2-y\right)+\left(2-y\right)=-12\)

\(\left(2-y\right)\left(2x+1\right)=-12\)

Mà \(x,y\in Z\)

\(2x+1\) là số nguyên lẻ

\(\Rightarrow2x+1\in\left\{-3;-1;1;3\right\}\)

\(\Rightarrow2x\in\left\{-4;-2;0;2\right\}\)

\(\Rightarrow x\in\left\{-2;-1;0;1\right\}\)

*) \(x=-2\)

\(\Rightarrow\left(2-y\right)\left[2.\left(-2\right)+1\right]=-12\)

\(\Rightarrow\left(2-y\right).\left(-3\right)=-12\)

\(\Rightarrow2-y=4\)

\(\Rightarrow y=-2\)

\(\Rightarrow\left(x;y\right)=\left(-2;-2\right)\)

*) \(x=-1\)

\(\Rightarrow\left(2-y\right)\left[2.\left(-1\right)+1\right]=-12\)

\(\Rightarrow\left(2-y\right).\left(-1\right)=-12\)

\(\Rightarrow2-y=12\)

\(\Rightarrow y=-10\)

\(\Rightarrow\left(x;y\right)=\left(-1;-10\right)\)

*) \(x=1\)

\(\Rightarrow\left(2-y\right)\left(2.1+1\right)=-12\)

\(\Rightarrow\left(2-y\right).3=-12\)

\(\Rightarrow2-y=-4\)

\(\Rightarrow y=6\)

\(\Rightarrow\left(x;y\right)=\left(1;6\right)\)

*) \(x=0\)

\(\Rightarrow\left(2-y\right)\left(2.0+1\right)=-12\)

\(\Rightarrow\left(2-y\right).1=-12\)

\(\Rightarrow2-y=-12\)

\(\Rightarrow y=14\)

\(\Rightarrow\left(x;y\right)=\left(0;14\right)\)

Vậy \(\left(x;y\right)\in\left\{\left(-2;-2\right);\left(-1;-10\right);\left(-2;-2\right);\left(0;14\right)\right\}\)

3 tháng 5

     Olm chào em, đây là dạng toán nâng cao chuyên đề giải phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay Olm sẽ hướng dẫn các em giải dạng này như sau:

                     Giải:

             2\(xy\) + y - 14 = 4\(x\)

            (2\(xy\) + y) - 14 = 4\(x\)

            y(2\(x\) + 1)        = 4\(x\) + 14

            y                     = (4\(x\) + 14) : (2\(x\) + 1)

            y \(\in\) Z ⇔ (4\(x\) + 14) ⋮ (2\(x\) + 1)

                      ⇒ (4\(x\) + 2 + 12) ⋮ (2\(x\) + 1)

                      ⇒ [2.(2\(x\) + 1) + 12] ⋮ (2\(x\) + 1)

                      ⇒   12 ⋮ (2\(x\) + 1)

          2\(x\) + 1 \(\in\) Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}

          Lập bảng ta có:

2\(x\) + 1 -12 -6 -4 -3 -2 -1 1 2 3 4 6 12
\(x\) -\(\dfrac{13}{2}\) \(\dfrac{5}{2}\) \(\dfrac{-3}{2}\) -2 \(\dfrac{-3}{2}\) -1 0 \(\dfrac{1}{2}\) 1 \(\dfrac{5}{2}\) \(\dfrac{5}{2}\) \(\dfrac{11}{2}\)
y = \(\dfrac{4x+14}{2x+1}\)       -2   -10 14   6      
\(x;y\in\) Z loại loại loại   loại     loại   loại loại loại

Theo bảng trên ta có: (\(x\); y) = (-2; -2); (-1; -10); (0; 14); (1; 6)

Kết luận: Các cặp \(x;y\) nguyên thỏa mãn đề bài là: 

(\(x;y\)) = (-2; -2); (-1; -10); (0; 14); (1; 6)

                        

 

 

 

 

 

 

3 tháng 5

Số học sinh giỏi:

\(45.\dfrac{1}{5}=9\) (học sinh)

Số học sinh khá:

\(45.\dfrac{2}{15}=6\) (học sinh)

Số học sinh trung bình:

\(\left(9+6\right).60\%=9\) (học sinh)

Số học sinh yếu:

\(45-9-6-9=21\) (học sinh)