Bài 1:Thu gọn
a) (x-2)3-x(x+1)(x-1)+6x(x-3)
b) (x+1)3-(x-1)3-6(x-1)2
c) (2x+1)(4x2-2x+1)+(2-3x)(4+6x+9x2)-9
d) (x+1)3+(x-1)3+x3-3x(x-1)(x+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(100x^2-\left(x^2+25\right)^2=\left(10x\right)^2-\left(x^2+25\right)^2=\left(10x-x^2-25\right)\left(x^2+10x+25\right)\)
\(=-\left(x-5\right)^2\left(x+5\right)^2\)
\(b,x-y+5=a\text{ thì biểu thức bằng:}a^2-2a+4>0\text{ nên k phân tích đc}\)
\(d,x^3+27y^3=\left(x+3y\right)\left(x^2-3xy+9y^2\right)\)
a) 100x2 - ( x2 + 25 )2
= ( 10x )2 - ( x2 + 25 )2
= [ 10x - ( x2 + 25 ) ][ 10x + ( x2 + 25 ) ]
= ( -x2 + 10x - 25 )( x2 + 10x + 25 )
= -( x2 - 10x + 25 )( x2 + 10x + 25 )
= -( x - 5 )2( x + 5 )2
b) ( x - y + 5 )2 + 4 - 4( x - y + 5 ) ( 4 may ra còn phân tích được :)) )
= ( x - y + 5 )2 - 2( x - y + 5 ).2 + 22
= ( x - y + 5 - 2 )2
= ( x - y + 3 )2
c) a2 - 25( b - c ) ( không phân tích được :)) )
d) x3 + 27y3 = x3 + ( 3y )3 = ( x + 3y )( x2 - 3xy + 9y2 )
a) x(x - 2) + (x - 2) = 0
=> (x + 1)(x - 2) = 0
=> \(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Vậy \(x\in\left\{-1;2\right\}\)
b) \(\frac{2}{3}x\left(x^2-4\right)=0\)
=> x(x2 - 4) = 0
=> \(\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=2^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
g) (x + 2)2 - x + 4 = 0
=> x2 + 4x + 4 - x + 4 = 0
=> x2 + 3x + 8 = 0
=> (x2 + 3x + 9/4) + 23/4 = 0
=> (x + 3/2)2 + 23/4 \(\ge\frac{23}{4}>0\)
=> Phương trình vô nghiệm
h) (x + 2)2 = (2x - 1)2
=> (x + 2)2 - (2x - 1)2 = 0
=> (x + 2 - 2x + 1)(x + 2 + 2x - 1) = 0
=> (-x + 3)(3x + 1) = 0
=> \(\orbr{\begin{cases}-x+3=0\\3x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-\frac{1}{3}\end{cases}}\)
=> \(x\in\left\{3;-\frac{1}{3}\right\}\)
a) x( x - 2 ) + x - 2 = 0
⇔ x( x - 2 ) + 1( x - 2 ) = 0
⇔ ( x - 2 )( x + 1 ) = 0
⇔ \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
b) 2/3x( x2 - 4 ) = 0
⇔ \(\orbr{\begin{cases}\frac{2}{3}x=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
g) ( x + 2 )2 - x + 4 = 0
⇔ x2 + 4x + 4 - x + 4 = 0
⇔ x2 + 3x + 8 = 0 (*)
Ta có : x2 + 3x + 8 = ( x2 + 3x + 9/4 ) + 23/4 = ( x + 3/2 )2 + 23/4 ≥ 23/4 > 0 ∀ x
=> (*) không xảy ra
=> Pt vô nghiệm
h) ( x + 2 )2 = ( 2x - 1 )2
⇔ ( x + 2 )2 - ( 2x - 1 )2 = 0
⇔ [ ( x + 2 ) - ( 2x - 1 ) ][ ( x + 2 ) + ( 2x - 1 ) ] = 0
⇔ ( x + 2 - 2x + 1 )( x + 2 + 2x - 1 ) = 0
⇔ ( 3 - x )( 3x + 1 ) = 0
⇔ \(\orbr{\begin{cases}3-x=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-\frac{1}{3}\end{cases}}\)
a) x4 - 16x2 = 0
<=> ( x2 )2 - ( 4x )2 = 0
<=> ( x2 - 4x )( x2 + 4x ) = 0
<=> [ x( x - 4 ) ][ x( x + 4 ) ] = 0
<=> x( x - 4 )x( x + 4 ) = 0
<=> x2( x - 4 )( x + 4 ) = 0
<=> \(\hept{\begin{cases}x^2=0\\x-4=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)( thay bằng dấu hoặc hộ mình nhé )
b) 9x2 + 6x + 1 = 0
<=> ( 3x )2 + 2.3x.1 + 12 = 0
<=> ( 3x + 1 )2 = 0
<=> 3x + 1 = 0
<=> 3x = -1
<=> x = -1/3
c) x2 - 6x = 16
<=> x2 - 6x - 16 = 0
<=> x2 + 2x - 8x - 16 = 0
<=> x( x + 2 ) - 8( x + 2 ) = 0
<=> ( x + 2 )( x - 8 ) = 0
<=> \(\orbr{\begin{cases}x+2=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)
d) 9x2 + 6x = 80
<=> 9x2 + 6x - 80 = 0
<=> 9x2 + 30x - 24x - 80 = 0
<=> 9x( x + 10/3 ) - 24( x + 10/3 ) = 0
<=> ( x + 10/3 )( 9x - 24 ) = 0
<=> \(\orbr{\begin{cases}x+\frac{10}{3}=0\\9x-24=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{10}{3}\\x=\frac{8}{3}\end{cases}}\)
e) Áp dụng công thức an.bn = ( ab )n ta có :
25( 2x - 1 )2 - 9( x + 1 )2 = 0
<=> 52( 2x - 1 )2 - 32( x + 1 )2 = 0
<=> [ 5( 2x - 1 ) ]2 - [ 3( x + 1 ) ]2 = 0
<=> ( 10x - 5 )2 - ( 3x + 3 )2 = 0
<=> [ ( 10x - 5 ) - ( 3x + 3 ) ][ ( 10x - 5 ) + ( 3x + 3 ) ] = 0
<=> ( 10x - 5 - 3x - 3 )( 10x - 5 + 3x + 3 ) = 0
<=> ( 7x - 8 )( 13x - 2 ) = 0
<=> \(\orbr{\begin{cases}7x-8=0\\13x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{7}\\x=\frac{2}{13}\end{cases}}\)
Bài làm :
a) x4 - 16x2 = 0
<=> ( x2 )2 - ( 4x )2 = 0
<=> ( x2 - 4x )( x2 + 4x ) = 0
<=> [ x( x - 4 ) ][ x( x + 4 ) ] = 0
<=> x( x - 4 )x( x + 4 ) = 0
<=> x2( x - 4 )( x + 4 ) = 0
Vậy x=0 hoặc x=±4
b) 9x2 + 6x + 1 = 0
<=> ( 3x )2 + 2.3x.1 + 12 = 0
<=> ( 3x + 1 )2 = 0
<=> 3x + 1 = 0
<=> 3x = -1
<=> x = -1/3
c) x2 - 6x = 16
<=> x2 - 6x - 16 = 0
<=> x2 + 2x - 8x - 16 = 0
<=> x( x + 2 ) - 8( x + 2 ) = 0
<=> ( x + 2 )( x - 8 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)
d) 9x2 + 6x = 80
<=> 9x2 + 6x - 80 = 0
<=> 9x2 + 30x - 24x - 80 = 0
<=> 9x( x + 10/3 ) - 24( x + 10/3 ) = 0
<=> ( x + 10/3 )( 9x - 24 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{10}{3}=0\\9x-24=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{10}{3}\\x=\frac{8}{3}\end{cases}}\)
e) 25( 2x - 1 )2 - 9( x + 1 )2 = 0
<=> 52( 2x - 1 )2 - 32( x + 1 )2 = 0
<=> [ 5( 2x - 1 ) ]2 - [ 3( x + 1 ) ]2 = 0
<=> ( 10x - 5 )2 - ( 3x + 3 )2 = 0
<=> [ ( 10x - 5 ) - ( 3x + 3 ) ][ ( 10x - 5 ) + ( 3x + 3 ) ] = 0
<=> ( 10x - 5 - 3x - 3 )( 10x - 5 + 3x + 3 ) = 0
<=> ( 7x - 8 )( 13x - 2 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}7x-8=0\\13x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{7}\\x=\frac{2}{13}\end{cases}}\)
a) Ta có : x4 - 16x2 = 0
=> x4 - 8x2 - 8x2 + 64 = 64
=> x2(x2 - 8) - 8(x2 - 8) = 64
=> (x2 - 8)2 = 64
=> \(\orbr{\begin{cases}x^2-8=8\\x^2-8=-8\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=16\\x^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\pm4\\x=0\end{cases}}\Rightarrow x\in\left\{4;-4;0\right\}\)
b) Ta có 9x2 + 6x + 1 = 0
=> 9x2 + 3x + 3x + 1 = 0
=> 3x(3x + 1) + (3x + 1) = 0
=> (3x + 1)2 = 0
=> 3x + 1 = 0
=> x = -1/3
c) Ta có x2 - 6x = 16
=> x2 - 6x + 9 = 25
=> (x - 3)2 = 25
=> \(\orbr{\begin{cases}x-3=5\\x-3=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=8\\x=-2\end{cases}}\Rightarrow x\in\left\{8;-2\right\}\)
d) 9x2 + 6x = 80
=> 9x2 + 6x + 1 = 81
=> (3x + 1)2 = 81
=> \(\orbr{\begin{cases}3x+1=9\\3x+1=-9\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{8}{3}\\x=-\frac{10}{3}\end{cases}\Rightarrow x\in}\left\{\frac{8}{3};\frac{-10}{3}\right\}\)
e) 25(2x - 1)2 - 9(x + 1)2 = 0
=> [5(2x - 1)]2 - [3(x + 1)]2 = 0
=> (10x - 5)2 - (3x + 3)2 = 0
=> (10x - 5 - 3x - 3)(10x - 5 + 3x + 3) = 0
=> (7x - 8)(13x - 2) = 0
=> \(\orbr{\begin{cases}7x=8\\13x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{8}{7}\\x=\frac{2}{13}\end{cases}}\)
Thực tiễn phong phú của cách mạng Việt Nam trong suốt 90 năm qua, Đảng ta đã tích luỹ và đúc rút được nhiều bài học kinh nghiệm lớn:
Một là, nắm vững ngọn cờ độc lập dân tộc và chủ nghĩa xã hội - ngọn cờ vinh quang mà Chủ tịch Hồ Chí Minh đã trao lại cho thế hệ hôm nay và các thế hệ mai sau. Độc lập dân tộc là điều kiện tiên quyết để thực hiện chủ nghĩa xã hội và chủ nghĩa xã hội là cơ sở bảo đảm vững chắc cho độc lập dân tộc. Xây dựng chủ nghĩa xã hội và bảo vệ tổ quốc xã hội chủ nghĩa là hai nhiệm vụ chiến lược có quan hệ chặt chẽ với nhau.
Hai là, sự nghiệp cách mạng là của nhân dân, do nhân dân và vì nhân dân. Chính nhân dân là người làm nên những thắng lợi lịch sử. Toàn bộ hoạt động của Đảng phải xuất phát từ lợi ích và nguyện vọng chính đáng của nhân dân. Sức mạnh của Đảng là ở sự gắn bó mật thiết với nhân dân. Quan liêu, tham nhũng, xa rời nhân dân sẽ dẫn đến những tổn thất khôn lường đối với vận mệnh của đất nước, của chế độ xã hội chủ nghĩa và của Đảng.
Ba là, không ngừng củng cố, tăng cường đoàn kết: Đoàn kết toàn Đảng, đoàn kết toàn dân, đoàn kết dân tộc, đoàn kết quốc tế. Đó là truyền thống quý báu và là nguồn sức mạnh to lớn của cách mạng nước ta. Chủ tịch Hồ Chí Minh đã tổng kết: Đoàn kết, đoàn kết, đại đoàn kết - Thành công, thành công, đại thành công.
Bốn là, kết hợp sức mạnh dân tộc với sức mạnh thời đại, sức mạnh trong nước với sức mạnh quốc tế. Trong bất cứ hoàn cảnh nào cũng cần kiên định ý chí độc lập, tự chủ, nêu cao tinh thần hợp tác quốc tế, phát huy cao độ nội lực, đồng thời tranh thủ ngoại lực, kết hợp yếu tố truyền thống với yếu tố hiện đại.
Năm là, sự lãnh đạo đúng đắn của Đảng là nhân tố hàng đầu quyết định thắng lợi của cách mạng Việt Nam. Đảng không có lợi ích nào khác ngoài việc phụng sự tổ quốc, phục vụ nhân dân. Đảng phải nắm vững, vận dụng sáng tạo, góp phần phát triển chủ nghĩa Mác - Lênin và tư tưởng Hồ Chí Minh, không ngừng làm giàu trí tuệ, nâng cao bản lĩnh chính trị, phẩm chất đạo đức và năng lực tổ chức để đủ sức giải quyết các vấn đề do thực tiễn cách mạng đặt ra. Mọi đường lối, chủ trương của Đảng phải xuất phát từ thực tế, tôn trọng quy luật khách quan. Phải phòng và chống những nguy cơ lớn: sai lầm về đường lối, bệnh quan liêu và sự thoái hoá, biến chất của cán bộ, đảng viên./.
Bổ đề: Cho tứ giác lồi bất kì thì tổng hai cạnh đối bé hơn tổng hai đường chéo (dễ chứng minh bằng cách sử dụng bất đẳng thức tam giác) (**)
Gọi E là giao điểm của AB và CD. Có thể xảy ra hai khả năng: ^B ≥ ^C hoặc ^B ≤ ^C
Giả sử ^B ≥ ^C (không mất tính tổng quát)
Trên tia đối của tia JA lấy K sao cho JA = JK
Dễ dàng có AD = BK (tứ giác ABKD có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành)
IJ là đường trung bình của ∆ACK nên CK = 2IJ
Áp dụng bổ đề (**) vào tứ giác BCKD, ta được: BD + CK < CD + BK
Vậy BD + 2IJ < CD + AD (1)
Trong ∆ABC thì AC < AB + BC (2)
Cộng vế với vế (1) và (2), ta được: AC + BD + 2IJ < AB + BC + CD + DA
\(a+3\text{ chia hết cho 5 do đó:}a\text{ chia 5 dư 2};\text{ }b+4\text{ chia hết cho 5 nên }b\text{ chia 5 dư 1}\)
\(\text{ do đó:}a^2+b^2\equiv2^2+1^2\equiv5\equiv0\left(\text{mod 5}\right)\text{ ta có điều phải chứng minh}\)
Vì \(a+3⋮5\)\(\Rightarrow\)\(a\)có dạng \(a=5m+2\)( \(m\inℤ\))
\(b+4⋮5\)\(\Rightarrow\)\(b\)có dạng \(b=5n+4\)( \(n\inℤ\) )
\(a^2+b^2=\left(5m+2\right)^2+\left(5n+1\right)^2\)
\(=25m^2+20m+4+25n^2+10n+1\)
\(=25m^2+20m+25n^2+10n+5⋮5\)( đpcm )
a) ( x - 2 )3 - x( x + 1 )( x - 1 ) + 6x( x - 3 )
= x3 - 6x2 + 12x - 8 - x( x2 - 1 ) + 6x2 - 18x
= x3 - 6x - 8 - x3 + x
= -5x - 8
b) ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2
= x3 + 3x2 + 3x + 1 - ( x3 - 3x2 + 3x - 1 ) - 6( x2 - 2x + 1 )
= x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1 - 6x2 + 12x - 6
= 12x - 4
c) ( 2x + 1 )( 4x2 - 2x + 1 ) + ( 2 - 3x )( 4 + 6x + 9x2 ) - 9
= ( 2x )3 + 13 + 23 - ( 3x )3 - 9
= 8x3 + 1 + 8 - 27x3 - 9
= -19x3
d) ( x + 1 )3 + ( x - 1 )3 + x3 - 3x( x - 1 )( x + 1 )
= x3 + 3x2 + 3x + 1 + x3 - 3x2 + 3x - 1 + x3 - 3x( x2 - 1 )
= 3x3 + 6x - 3x2 + 3x
= 9x